Kalibriertool für Drucktransmitter

Diplomarbeit 2004 Informatik TS

Marco Di Menco

Inhaltsverzeichnis

1	Einfüh	rung	1
2	Planur		2
2.1	Aufga	abenstellung	
2.2	Anfo	rderungsspezifikation	3
	2.2.1	Einführung	3
	2.2.2	Ziele	3
	2.2.3	Einsatz	5
	2.2.4	Funktionen	6
	2.2.5	Schnittstellen	7
	2.2.6	Leitungsanforderung	7
	2.2.7	Daten/Datenbank	7
	2.2.8	Weitere Merkmale	7
2.3	Zeitp	olan	8
	2.3.1	Übersicht	8
	2.3.2	Soll-Ist Vergleich	9

3	Analyse 10		
3.1	Über	sicht	10
3.2	Syste	mgrenze	10
3.3	Use C	Cases	11
	3.3.1	Use Case Diagramm	11
	3.3.2	Beschreibung der Aktoren	13
	3.3.3	Use Case UploadeGeraetedaten	13
	3.3.4	Use Case DownloadeGeraetedaten	14
	3.3.5	Use Case ErstelleNeuesGeraet	14
	3.3.6	Use Case AendereGeraet	15
	3.3.7	Use Case LoescheGeraet	15
	3.3.8	Use Case KonfiguriereHW	16
	3.3.9	Use Case EroeffneProjekt	16
	3.3.10	Use Case LadeProjekt	17
	3.3.11	Use Case SpeichereProjekt	17
	3.3.12	Use Case SchliesseProjekt	18
	3.3.13	Use Case zeigeKalibrierzertifikat	18
	3.3.14	Use Case aktualisiereKalibrierzertifikate	19
3.4	Syste	m-Sequenzdiagramme	20
	3.4.1	erstelleNeuesGeraet	20
	3.4.2	aendereGeraet	20
	3.4.3	loescheGeraet	21
	3.4.4	konfiguriereHW	21
	3.4.5	uploadeGeraetedaten	22

	3.4.6	downloadeGeraetedaten	2
	3.4.7	eroeffneProjekt	3
	3.4.8	ladeProjekt	3
	3.4.9	speichereProjekt2	4
	3.4.10	schliesseProjekt2	4
	3.4.11	zeigeKalibrierzertifikat	5
	3.4.12	aktualisiereKalibrierzertifikat	5
3.5	Konze	eptionelles Modell20	6
3.6	Kontr	⁻ akte	7
	3.6.1	erstelleNeuesGeraet	7
	3.6.2	aendereGeraet	7
	3.6.3	loescheGeraet	8
	3.6.4	uploadeGeraetedaten	8
	3.6.5	downloadeGeraetedaten	9
	3.6.6	konfiguriereHW2	9
	3.6.7	eroeffneProjekt	0
	3.6.8	ladeProjekt	0
	3.6.9	speichereProjekt	0
	3.6.10	schliesseProjekt	1
	3.6.11	zeigeKalibrierzertifikat	1
	3.6.12	aktualisiereKalibrierzertifikat	1
3.7	Revie	ew / Entscheidungen	2
	3.7.1	Entscheidung	2

4	Design		33
4.1	Syste	marchitektur	33
	4.1.1	Zielsystem	33
	4.1.2	Schnittstellen	33
	4.1.3	Entwicklung	33
4.2	User	Interface	34
	4.2.1	Hauptfenster	34
	4.2.2	Menu	34
	4.2.3	Konfigurationsdialog	34
	4.2.4	Gerätedialoge	35
4.3	Intera	aktionsdiagramme	36
	4.3.1	erstelleDruckschalter	36
	4.3.2	erstelleDrucktransmitter	36
	4.3.3	aendereGeraet	37
	4.3.4	downloadeGeraetedaten	38
	4.3.5	uploadeGeraetedaten	38
	4.3.6	loescheGeraet	39
	4.3.7	eroeffneProjekt	39
	4.3.8	oeffneProjekt	40
	4.3.9	speichereProjekt	41
	4.3.10	konfiguriereHW	42
	4.3.11	initialisiereHW	43
	4.3.12	Package Diagramm	44

4.4	Desig	gn Klassendiagramm	44
	4.4.1	GUI	44
	4.4.2	Application Logic	45
	4.4.3	Hardware	46
	4.4.4	Datenhaltung	46
5	Implen	mentation	47
5.1	Serie	elle Schnittstelle	
	5.1.1	Threads	47
	5.1.2	Thread-Synchronisierung	47
6	Test		48
6.1	Testr	methode	
6.2	Errei	chung der Ziele	48
6.3	Einsa	ntz	49
6.4	Funk	tionen	50
6.5	Schni	ittstellen	51
6.6	Date	n/Datenbank	52
6.7	Weite	ere Merkmale	52
7	Schlus	swort	53
8	Literat	tur- und Linkverzeichnis	54
8.1	Softw	vareengineering	54
8.2	Progr	rammierung C++/MFC	54
8.3	Inter	netlinks	54

9	Anhang A		
9.1	CD		
9.2	Arbei	itspakete	ا
	9.2.1	Planung	II
	9.2.2	Analyse	
	9.2.3	Design	III
	9.2.4	Implementation	IV
	9.2.5	Tests	IV
	9.2.6	Dokumentation	V
9.3	Besti	mmungen für die Diplomarbeit	VI
9.4	.4 Protokolle der BetreuersitzungenIX		
10	Anhan	g B	XIII
10.	1 Doku	mentation Programmieradapter "Digipack"	XIII
An	hang C	Sourcecode zus	sätzliches Dokument

1 Einführung

Das digitale Zeitalter schreitet immer weiter. Es ist schon soweit, dass auch ich den kleinsten Geräten, in welchen bis vor kurzem noch reine Analogtechnik und Potentiometer in Feinmechanik eingesetzt wurden, heute ein Mikrokontroller steckt.

Dies ist auch bei der Firma Trafag so. Um den steigenden Anforderungen gerecht zu werden, mussten auch sie in ihren Geräten "Intelligenz" für die Kompensationen einbauen. Diese Mikrokontroller werden hauptsächlich in der Produktion für die Eichung verwendet.

Diese Technologie möchte die Firma Trafag jetzt auch ihren Kunden zugänglich machen, dass diese auch kleine Korrekturen oder Einstellungen an den Geräten vornehmen können.

Als ich mit meiner Anfrage für eine Diplomarbeit bei der Firma Trafag auf offene Ohren stiess, entschloss ich mich die Herausforderung anzunehmen.

Es gilt eine Applikation zu entwickeln, die den Bedürfnissen der Firma Trafag und ihren Kunden gerecht würden. Demnach den mechanischen Schraubenzieher durch einem digitalen zu ersetzen.

2 Planung

2.1 Aufgabenstellung

Di Menco Marco Bahnhofwiese 2 8712 Stäfa

Wald, 28. März 2004

Diplomarbeit 2004 (Informatik)

Sehr geehrter Herr Di Menco

Sie erhalten folgende Diplomarbeit zugeteilt, die Sie selbständig lösen möchten.

Kalibriertool für Drucktransmitter

Es soll ein Windows-Tool für die Rekalibrierung von Drucktransmittern der Firma Trafag AG erstellt werden, mit dem Kunden oder Vertretungen kleinere Korrekturen oder Einstellungen vornehmen können. Die Rekalibrierung erfolgt über einen von der Firma Trafag AG entwickelten Programmieradapter, der über die serielle Schnittstelle

Die Aufgabe umfasst folgende Punkte:

- Projektplanung
- Pflichtenheft
- Entwurf der Analyse
- Entwurf des Designs
- Implementieren der Problemdomain Testen anhand des Pflichtenheftes
- Dokumentation aller Arbeitsschritte

Optional:

- Anzeigen von Digitalen Kalibrierzertifikaten (Mittels Seriennummer)
- Herunterladen neuer digitaler Kalibrierzertifikate über das Web (Live Update)

Eingesetzte Mittel:

- Betriebssysteme: Windows NT, Windows 2000
- Visual Studio.Net
- Programmieradapter der Firma Trafag AG

7. April 2004 Ausgabe der Aufgabenstellung: Abgabe der 2 Dokumentationen: 17. August 2004

Mit freundlichen Grüssen

D. Venosta Betreuer

Schuladresse: Postfach 7, CH-8612 Uster, <u>info@tsu.ch</u>, <u>www.tsu.ch</u> Sekretariat: Haldenweg 10 CH-8322 Madetswil, Tel. 01 954 11 27, Fax 01 954 07 31

2.2 Anforderungsspezifikation

2.2.1 Einführung

2.2.1.1 Zweck

Das Softwareprodukt wird eingesetzt um Druckmessgeräte im Feld, von Kunden oder Vertretungen der Firma Trafag AG, zu konfigurieren.

2.2.1.2 Referenzen

Dokumentation der Firma Trafag:

- Dokumentation des Programmieradapters ("Digipack")
- Geräte Dokumentationen EPS (Druckschalter)
- Geräte Dokumentationen ECO/EPT (Analoge Drucktransmitter¹)

2.2.2 Ziele

2.2.2.1 Allgemeine Beschreibung

Das zu entwickelnde Softwareprodukt ermöglicht seinen Benutzern Druckmessgeräte der Firma Trafag zu konfigurieren oder nachzukalibrieren.

Das Programm kann, mit Hilfe eines Programmieradapters ("Digipack"), die Konfiguration der Druckmessgeräte lesen oder beschreiben.

2.2.2.2 Muss-Kriterien

- Erstellung einer grafischen Benutzeroberfläche
- Ansteuerung des Programmieradapters
 - Die Software muss ein austauschbares Modul für die Programmieradapter-Kommunikation enthalten. Dieses Modul sollte so gekapselt sein, dass sie in anderen SW weiterverwendet werden kann.
 - Implementierung des Modbus² Protokoll über serielle Schnittstelle, gemäss Spezifikationen der Trafag AG (Anhang B Dokumentation Programmieradapter "Digipack")

¹ Drucktransmitter sind Geräte die Druck mittels einer Messzelle in ein elektrisches oder digitales Signal umformen.

 $^{^2 \ \}mathsf{Modbus} \ \mathsf{ist} \ \mathsf{ein} \ \mathsf{offenes} \ \mathsf{serielles} \ \mathsf{Kommunikationsprotokoll}, \ \mathsf{das} \ \mathsf{auf} \ \mathsf{der} \ \mathsf{Master-Slave-Architektur} \ \mathsf{basiert}.$

- Implementierung verschiedener Geräteprofile
 - o Druckschalter
 - Uploaden der Schaltpunkt-Parameter
 - Anzeigen der Schaltpunkt-Parameter
 - Ändern/Berechnen der neuen Schaltpunkt-Parameter
 - Downloaden/Überprüfen der neuen Schaltpunkt-Parameter
 - Die Schaltpunktparameter sind:
 - Schaltpunkt 1 ON (0...xxbar)
 - Schaltpunkt 1 OFF (0...xxbar)
 - Schaltpunkt 1 Delay (1ms 10s)
 - Schaltpunkt 2 ON (0...xxbar)
 - Schaltpunkt 2 OFF (0...xxbar)
 - Schaltpunkt 2 Delay (1ms 10s)
 - o Analoge Drucktransmitter "Feinkalibrierung"
 - Uploaden der Kalibrierwerte
 - Anzeigen der Kalibrierwerte
 - Schrittweise Ändern/Berechnen neuen Kalibrierwerte
 - Downloaden/Überprüfen der neuen Kalibrierwerte
 - Die änderbaren Kalibrierwerte sind:
 - Nullpunkt Korrektur (1...498)
 - Spanne Korrektur (1...498) (Verstärkung)
 - Die anzuzeigenden Kalibrierwerte sind:
 - Serienummer
 - Kalibriertemperatur
 - Temperaturkoeffizient des Nullpunktes (siehe Gerätedokumentation)
 - Temperaturkoeffizient der Spanne (siehe Gerätedokumentation)
 - Grobeinstellung der Spanne (30%,40%,70%,100%)
- Auslesen von Gerätedaten wie Serienummer, Produktionsdatum usw.
 - o Die Serienummer jedes Gerätes muss ausgelesen und angezeigt werden können.
- Speichern/Laden der Geräteparameter in eine/von einer Datei

2.2.2.3 Kann-Kriterien

- Anzeigen von digitalen Kalibrierzertifikaten (mittels Serienummer).
- Herunterladen neuer, aktueller, digitaler Kalibrierzertifikate über das Web (eine Art Live Update).

2.2.2.4 Abgrenzungskriterien

- Das bestehende Kommunikations-Protokoll muss verwendet werden.
- Die Software des Programmieradapters ist nicht Bestandteil des Projektes und kann nicht geändert oder angepasst werden.

2.2.3 Einsatz

2.2.3.1 Anwendungsbereiche

Die Anwendung erfolgt in der Industrie oder im Labor und wird in den meisten Fällen durch technisches Personal bedient.

2.2.3.2 Zielgruppen

Die Zielgruppe sind Kunden und Vertretungen der Firma Trafag, die Druckschalter oder Drucktransmitter einsetzen.

2.2.3.3 Software

Die Applikation sollte auf einem Standard Windowssystem ohne zusätzliche Software (wie z.B. Microsoft Office) auskommen.

Die Menus und GUI¹-Elemente müssen auf Grund der international verbreiteten Anwendergruppe in Englisch verfasst werden.

Mit Ausnahme der Systemmenus (Öffnen, Speichern, OK, Abbrechen) diese Funktionen können in der jeweils eingestellten Sprache des Betriebssystems erscheinen.

2.2.3.4 Hardware

Die Software muss auf einem Desktop-PC oder auf einem Notebook mit Intelarchitektur (mind. Pentium II 300MHz) laufen.

Voraussetzung sind die Betriebssysteme Windows 2000/XP.

2.2.3.5 Sicherheit

Keine spezifischen Anforderungen.

¹ GUI = Graphical User Interface (Benutzeroberfläche)

2.2.4 Funktionen

2.2.4.1 Konfigurieren der Kommunikationsschnittstelle

Es muss die Möglichkeit bestehen die Kommunikationsschnittstelle (Com-Port) auszuwählen.

Diese Einstellungen müssen abgespeichert werden.

2.2.4.2 Initialisieren des Programmieradapters ("Digipack")

Nach der Auswahl des Com-Ports muss getestet werden, ob der Programmieradapter am ausgewählten Port angeschlossen ist.

2.2.4.3 Erzeugen eines neuen Gerätes

Mit dieser Funktion wird ein Gerät der Arbeitsfläche hinzugefügt.

Der Benutzer muss beim Erzeugen eines neuen Gerätes den Gerätetyp auswählen können. Mit dieser Auswahl wird die richtige Programmiermethode und das GUI mit dem Parametern ausgewählt.

2.2.4.4 Löschen von Geräten

Die erzeugten Geräte müssen wieder von der Arbeitsfläche entfernt werden können.

2.2.4.5 Upload von Gerätedaten

Mit dieser Funktion werden über den Programmieradapter die Geräteparameter aus dem Gerät gelesen.

2.2.4.6 Änderung von Gerätedaten

Mit dieser Funktion werden die Gerätedaten des gewählten Gerätes geändert.

2.2.4.7 Download von Gerätedaten

Diese Funktion dient dazu, die Geräteparameter über den Programmieradapter in das Gerät zu laden.

2.2.4.8 Speichern von Gerätedaten

Die Gerätedaten müssen in eine Datei gespeichert werden können.

2.2.4.9 Laden von Gerätedaten

Die abgespeicherten Gerätedaten müssen wieder aus einer Datei geladen werden können.

2.2.5 Schnittstellen

2.2.5.1 Benutzeroberfläche

Es muss eine vollgrafische Windowsapplikation erstellt werden. Das User Interface muss den gängigen Standards für Windows-Applikationen genügen.

2.2.5.2 Software

Keine Schnittstelle zu anderen Softwareprodukten (wie z.B. MS Office) mit Ausnahme der Pakete einer Windows Standardinstallation wie Internet Explorer usw.

2.2.5.3 Hardware

Serielle Schnittstelle, eventuell auch über Bluetooth oder USB (über Windows ComPort -Treiber).

Für die Programmierung wird ein Programmieradapter ("DigiPack") verwendet, der mit einer seriellen Schnittstelle (RS232) ausgerüstet ist.

2.2.5.4 Kommunikationsschnittstellen

Der Programmieradapter wird mit einem Modbus Protokoll gemäss Spezifikationen der Trafag AG angesteuert. Genauere Details sind im Anhang beigefügt.

Der Berechnungsalgorithmus für die CRC16-Checksumme wird von der Firma Trafag AG geliefert.

2.2.6 Leitungsanforderung

Keine speziellen Anforderungen bezüglich Leistungsfähigkeit.

2.2.7 Daten/Datenbank

Gerätedaten oder Gerätekonfigurationen müssen in eine Datei abgespeichert werden können.

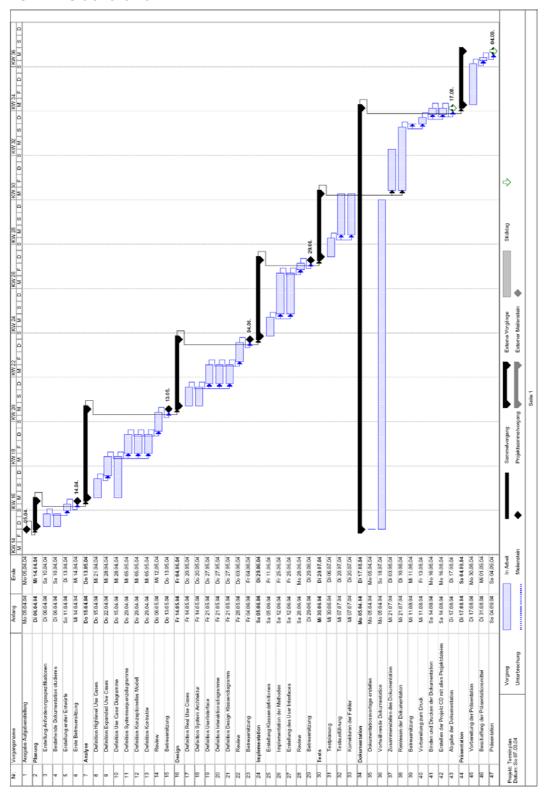
2.2.8 Weitere Merkmale

2.2.8.1 Randbedingungen zur Entwicklung

Es ist eine MFC¹(Microsoft Foundation Classes) Anwendung in C++ zu entwickeln.

2.2.8.2 Randbedingungen im Betrieb

Der Programmieradapter muss für den Betrieb immer angeschlossen sein.

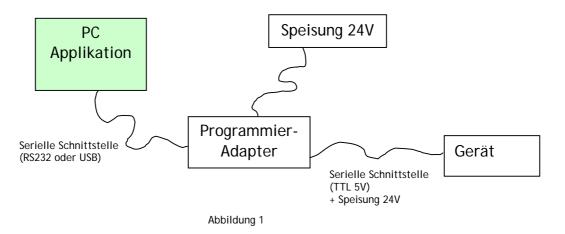

_

¹ MFC = Microsoft Foundation Classes ein objektorientiertes Framework auf C++ Basis der Windows API.

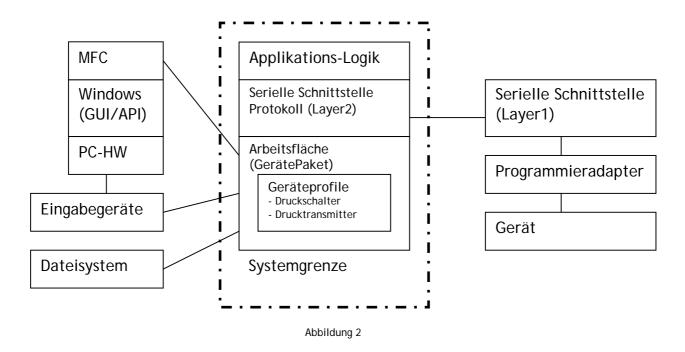
2.3 Zeitplan

2.3.1 Übersicht

2.3.2 Soll-Ist Vergleich


Projektphase		Beginn	Ende	Stundenaufwand
Planung	Soll	06.04.2004	14.04.2004	30 h
Fianting	lst	06.04.2004	10.04.2004	25 h
Analyse	Soll	15.04.2004	13.05.2004	50 h
Allalyse	lst	12.04.2004	11.05.1004	40h
Design	Soll	14.05.2004	04.06.2004	40 h
Design	lst	14.05.2004	17.06.2004	35 h
Implementation	Soll	05.06.2004	29.06.2004	20 h
Implementation	lst	17.06.2004	06.07.2004	40 h
Test	Soll	30.06.2004	20.07.2004	10 h
1631	lst	05.07.2004	12.08.2004	5 h
Dokumentation	Soll	05.04.2004	17.08.2004	50 h
Dokumentation	lst	01.04.2004	17.08.2004	55 h
Total	Ist	-	-	200 h

Eine detaillierte Auflistung der einzelnen Arbeitspakete befindet sich im Anhang (9.2 Arbeitspakete).



3 Analyse

3.1 Übersicht

3.2 Systemgrenze

Dieses Projekt beschränkt sich auf die Applikationslogik, Geräteprofile, GUI, Datenhaltung und des Protokolls der seriellen Schnittstelle. Die Geräte-Profile bestehen aus zwei Profilen, aus einem Druckschalterprofil und

einem Drucktransmitterprofil.

3.3 Use Cases

3.3.1 Use Case Diagramm

3.3.1.1 Geräte Use Cases

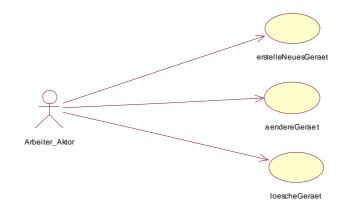


Abbildung 3

3.3.1.2 Hardware Use Cases

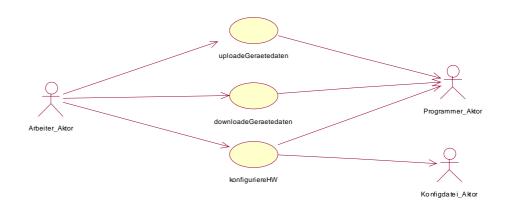


Abbildung 4

3.3.1.3 Projekt Use Cases

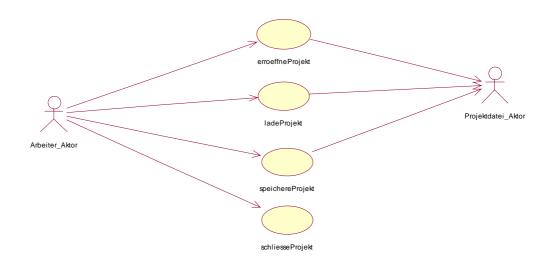


Abbildung 5

3.3.1.4 Optionale Use Cases

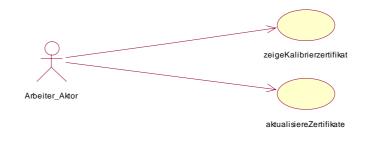


Abbildung 6

3.3.2 Beschreibung der Aktoren

Name		Beschreibung
2	Arbeiter_Aktor	Löst das Erstellen, Ändern, Löschen von Geräten aus. Konfiguriert die Hardware und initiiert den Upload und Download von Gerätedaten.
2	Programmer_Aktor	Kommuniziert mit dem Gerät, ist für dem Up/Download zuständig.
2	Projektdatei_Aktor	Dieser Aktor nimmt das Projekt und die Gerätedaten auf.
2	Konfigdatei_Aktor	Dieser Aktor nimmt Konfigurationsdaten auf.

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.3 Use Case UploadeGeraetedaten

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor, Programmer_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt den Upload der Gerätekonfiguration.		
Priorität	Essentiell, Hauptfunktion		
Referenzen	2.2.4.5 Upload von Gerätedaten		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. uploadeGeraetedat	en()		
	IeseGeraetedaten()		
3. erhalteGeraetedate	en() 4. uploadErfolgreich		

3.3.4 Use Case DownloadeGeraetedaten

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor, Programmer_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt den Download der Gerätekonfiguration.		
Priorität	Essentiell, Hauptfunktion		
Referenzen	2.2.4.7 Download von Gerätedaten		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. downloadeGeraeted	daten()		
	speichereGeraetedaten()		
3. speichernErfolgreic	v		
	4. DownloadErfolgreich		

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.5 Use Case ErstelleNeuesGeraet

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt das Erstellen eines neuen Gerätes im Projekt.		
Priorität	Essentiell, Hauptfunktion		
Referenzen	2.2.4.3 Erzeugen eines neuen Gerätes		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. addGeraet()			
	GeraeteTypAuswahl		
3. setGeraetetyp(Gera	aetetyp)		
	4. ErstellenErfolgreich		
Aldian Aldan (Istilator) / Davis and Aldan			

3.3.6 Use Case AendereGeraet

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt das Ändern eines Gerätes im Projekt.		
Priorität	Essentiell, Hauptfunktion		
Referenzen	2.2.4.6 Änderung von Gerätedaten		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. aendereGeraet()			
	sendeGeraeteDaten(daten)		
3. setNeueGeraetedat	ren(daten) 4. AendernErfolgreich		

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.7 Use Case LoescheGeraet

Name	Beschreibung
Aktor(en)	Arbeiter_Aktor
Kurzbeschreibung	Dieser Use Case behandelt das Entfernen eines Gerätes aus dem Projekt.
Priorität	Essentiell
Referenzen	2.2.4.4 Löschen von Geräten
Ablauf:	
Aktor-Aktionen	Systemantwort
1. loescheGeraet()	
	bestaetigeLoeschen
3. bestaetigeLoescher	(OK) 4. LoeschenErfolgreich
Aletines Aletes (Initiates) / Da	

3.3.8 Use Case KonfiguriereHW

Nar	lame Beschreibung		g		
Aktor(en) Arbeiter_A		Aktor, Ka	onfigdatei_Aktor, Programmer_Aktor		
		Dieser Use Case behandelt das Konfigurieren der Kommunikationsschnittstelle für den Programmieradapter und speichert diese in die Konfig-Datei.			
Prio	orität	Essentiell	Essentiell		
Ref	erenzen	2.2.4.1 Ko	onfigurier	ren der Kommunikationsschnittstelle	
Abl	auf:				
Aktor-Aktionen		Systemantwort			
1.	konfiguriereHW()				
			2.	EingabeKonfiguration	
3.	3. setKonfiguration(Konfig)				
			4.	initialisiereProgrammer(Einstellungen)	
5.	5. KonfigurationErfolgreich				
			6.	speichereEinstellung	
7.	7. speichernErfolgreich		8.	KonfigurationErfolgreich	

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.9 Use Case EroeffneProjekt

Name	Beschreibung	
Aktor(en)	Arbeiter_Aktor, Projektdatei_Aktor	
Kurzbeschreibung	Dieser Use Case behandelt das Erstellen eines neuen Projektes	
Priorität	Essentiell	
Referenzen	-	
Ablauf:		
Aktor-Aktionen	Systemantwort	
1. EroeffneNeuesProjekt(Name)		
	2. ProjektErfolgreichErstellt()	
ALL: ALL (L.:		

3.3.10 Use Case LadeProjekt

Name	Beschreibung		
Aktor(en) Arbeiter_Aktor, Projektdatei_Aktor			
Kurzbeschreibung	Dieser Use Case behandelt das Laden eines bestehenden Projektes.		
Priorität	Essentiell		
Referenzen	2.2.4.9 Laden von Gerätedaten		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. LadeProjekt(Datein	iame)		
	2.	oeffne(Dateiname)	
	3.	leseDaten()	
4. Projektdaten			
	5.	schliesseDatei()	
6. erfolgreich			
	7.	ProjektErfolgreichGeladen()	

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.11 Use Case SpeichereProjekt

Name	Beschreibun	g	
Aktor(en)	Arbeiter_Aktor, Pi	rojektdatei_Aktor	
Kurzbeschreibung	Dieser Use Case behandelt das Speichern eines Projektes.		
Priorität	Essentiell		
Referenzen	2.2.4.8 Speichern von Gerätedaten		
Ablauf:			
Aktor-Aktionen	Systemantwort		
SpeichereProjekt(Dateiname)			
	2.	oeffne(Dateiname)	
	3.	schreibeProjektdaten()	
4. erfolgreich			
	5.	schliesseDatei()	
6. erfolgreich			
	7.	ProjektErfolgreichGespeichert()	

3.3.12 Use Case SchliesseProjekt

Nar	me Beschreibung		g		
Aktor(en) Arbeiter_Aktor					
Kur	zbeschreibung	Dieser Use	Dieser Use Case behandelt das Schliessen eines Projektes.		
Prio	orität	Essentiell			
Ref	erenzen	-			
Abl	auf:				
Akt	or-Aktionen		Syst	emantwort	
1.	schliesseProjekt()		2.	[nochnichtgespeichert]ProjektSpeichern?	
3. [nochnichtgespeichert]					
	ProjektSpeichern(A	uswani)	4.	ProjektErfolgreichGeschlossen	

Aktiver Aktor (Initiator) / Passiver Aktor

3.3.13 Use Case zeigeKalibrierzertifikat

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt das Anzeigen des Kalibrierzertifikates eines im Projekt befindlichen Gerätes.		
Priorität	Optional		
Referenzen	-		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. zeigeZertifikat(SerieNr)			
	2. ladeZertifikat		
	3. returnKalibrierZertifikat		

3.3.14 Use Case aktualisiereKalibrierzertifikate

Name	Beschreibung		
Aktor(en)	Arbeiter_Aktor		
Kurzbeschreibung	Dieser Use Case behandelt das Aktualisieren der Kalibrierzertifikate.		
Priorität	Optional		
Referenzen	-		
Ablauf:			
Aktor-Aktionen	Systemantwort		
1. aktualisiereZertifik	ate ()		
	 downloadeZertifikate() aktualisierenErfolgreich 		

3.4 System-Sequenzdiagramme

3.4.1 erstelleNeuesGeraet

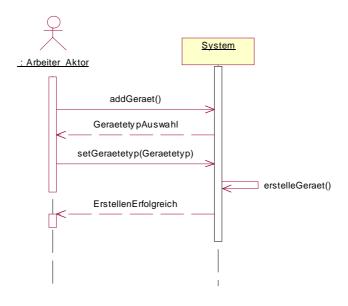
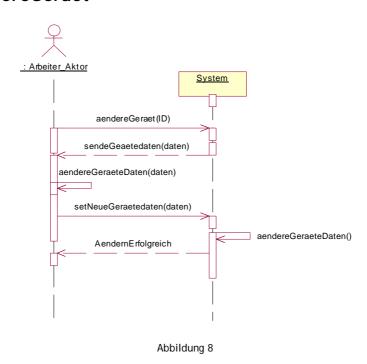



Abbildung 7

3.4.2 aendereGeraet

3.4.3 loescheGeraet

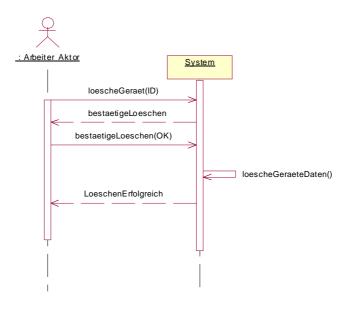


Abbildung 9

3.4.4 konfiguriereHW

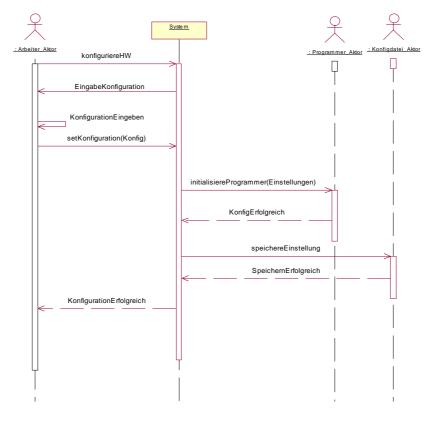


Abbildung 10

3.4.5 uploadeGeraetedaten

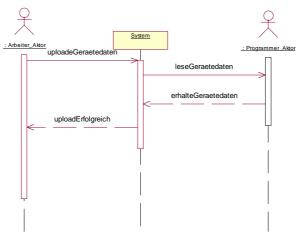


Abbildung 11

3.4.6 downloadeGeraetedaten

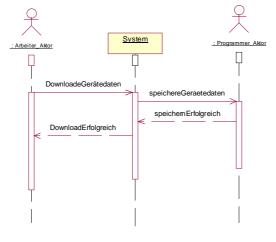


Abbildung 12

3.4.7 eroeffneProjekt

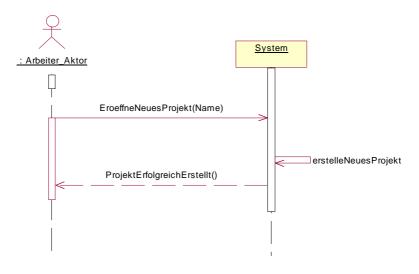
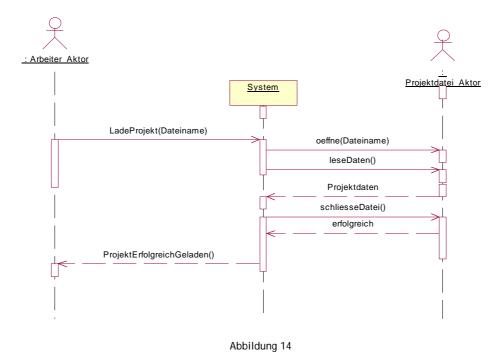
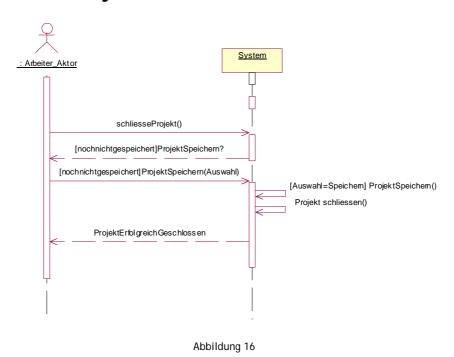



Abbildung 13

3.4.8 ladeProjekt



3.4.9 speichereProjekt

Abbildung 15

3.4.10 schliesseProjekt

3.4.11 zeigeKalibrierzertifikat

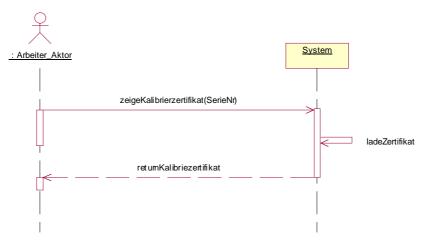
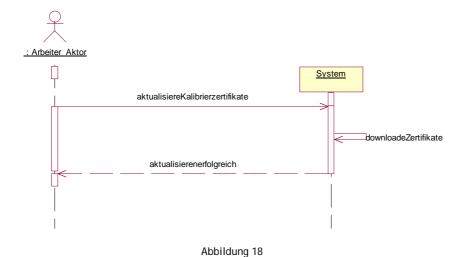



Abbildung 17

3.4.12 aktualisiereKalibrierzertifikat

3.5 Konzeptionelles Modell

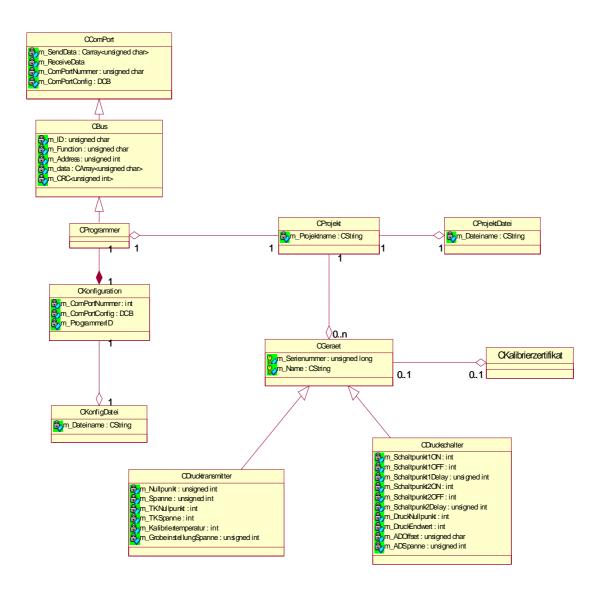


Abbildung 19

3.6 Kontrakte

3.6.1 erstelleNeuesGeraet

Name	erstelleNeuesGeraet
Verantwortlichkeiten	Erstellt neues Gerät und fügt es dem Projekt hinzu.
Cross Referenz	2.2.4.3 Erzeugen eines neuen Gerätes
	3.3.5 Use Case ErstelleNeuesGeraet
Notizen	
Ausnahmen(Fehler)	Falls kein Name angegeben -> Fehleranzeige
Output	Ein neues Gerät.
Vorbedingungen	Ein Projekt ist erstellt.
Nachbedingungen	Ein neues Gerät ist erstellt worden.
	 Das Gerät ist dem Projekt hinzugefügt worden.
	 Der Gerätetyp ist definiert worden.
	J.

3.6.2 aendereGeraet

Name	aendereGeraet
Verantwortlichkeiten	Ändert die Parameter eines bestehenden Gerätes.
Cross Referenz	2.2.4.6 Änderung von Gerätedaten3.3.6 Use Case AendereGeraet
Ausnahmen(Fehler)	 Falls die Geräteparameter ausserhalb des Wertebereiches -> Fehleranzeige
Output	-
Vorbedingungen	 Das zu editierende Gerät muss vorhanden sein. Die Serienummer des zu editierenden Gerätes darf nicht "Leer" sein (d.h. das Gerät muss nach dem Erstellen zumindest einmal upgeloadet sein).
Nachbedingungen	 Die Parameter des Gerätes sind geändert worden. Die Parameter stehen zum Download bereit.

3.6.3 loescheGeraet

Name	loescheGeraet			
Verantwortlichkeiten	Entfernt das Gerät aus dem aktuellen Projekt.			
Cross Referenz	2.2.4.4 Löschen von Geräten			
	3.3.7 Use Case LoescheGeraet			
Ausnahmen(Fehler)	-			
Output	-			
Vorbedingungen	Das zu löschende Gerät muss vorhanden sein.			
Nachbedingungen	 Das Gerät ist aus dem aktuellen Projekt entfernt worden. Die Gerätedaten des Gerätes sind gelöscht worden. 			

3.6.4 uploadeGeraetedaten

Name	uploadeGeraetedaten			
Verantwortlichkeiten	Lädt die Gerätedaten aus dem, am Programmier- adapter angeschlossenen Gerät.			
Cross Referenz	2.2.4.5 Upload von Gerätedaten3.3.3 Use Case UploadeGeraetedaten			
Ausnahmen(Fehler)	 Falls der Programmieradapter oder die serielle Schnittstelle nicht angesprochen werden kann -> Fehleranzeige + Konfigurationsdialog. Falls das ausgewählte Gerät nicht dem am Programmieradapter angeschlossenen Gerät entspricht -> Fehleranzeige. 			
Output	-			
Vorbedingungen	 Das zu uploadende Gerät muss ausgewählt sein. Die Serienummer des ausgewählten Gerätes muss entweder "Leer" oder mit dem angeschlossen Gerät identisch sein. 			
Nachbedingungen	 Die Gerätedaten des ausgewählten Gerätes sind aktualisiert worden. Die Parameter sind zum Ändern bereit. 			

3.6.5 downloadeGeraetedaten

Name	downloadeGeraetedaten
Verantwortlichkeiten	Lädt die Gerätedaten in das am Programmier- adapter angeschlossenen Gerät.
Cross Referenz	2.2.4.7 Download von Gerätedaten 3.3.4 Use Case DownloadeGeraetedaten
Ausnahmen(Fehler)	 Falls der Programmieradapter oder die serielle Schnittstelle nicht angesprochen werden können -> Konfigurationsdialog. Falls das ausgewählte Gerät nicht dem am Programmieradapter angeschlossenen Gerät entspricht -> Fehleranzeige.
Output	-
Vorbedingungen	 Das zu downloadende Gerät muss ausgewählt sein. Die Serienummer des ausgewählten Gerätes muss mit dem angeschlossen Gerät identisch und nicht "Leer" sein.
Nachbedingungen	 Die Gerätedaten des ausgewählten Gerätes sind aktualisiert worden. Die Parameter sind zum Ändern bereit.

3.6.6 konfiguriereHW

Name	konfiguriereHW
Verantwortlichkeiten	Konfiguriert die serielle Schnittstelle und den
	angeschlossenen Programmieradapter.
Cross Referenz	2.2.4.1 Konfigurieren der Kommunikationsschnittstelle
	3.3.8 Use Case KonfiguriereHW
Ausnahmen(Fehler)	• Falls der Programmieradapter oder die serielle
	Schnittstelle nicht angesprochen werden können
	-> Fehleranzeige.
Output	Eintrag in Konfigdatei
Vorbedingungen	Keine
Nachbedingungen	Die Konfiguration wurde geändert und in die
	Konfigdatei abgespeichert.
	Die serielle Schnittstelle wurde mit den neuen
	Einstellungen geladen.
	Der Programmieradapter wurde initialisiert.

3.6.7 eroeffneProjekt

Name	eroeffneProjekt		
Verantwortlichkeiten	Erstellt ein neues und leeres Projekt		
Cross Referenz	3.3.9 Use Case EroeffneProjekt		
Ausnahmen(Fehler)	-		
Output	Neues Projekt		
Vorbedingungen	Bereits geöffnete Projekte müssen zuerst geschlossen werden.		
Nachbedingungen	Ein neues und leeres Projekt wurde erstellt.		
	Das leere Projekt wird angezeigt.		

3.6.8 ladeProjekt

Name	ladeProjekt			
Verantwortlichkeiten	Lädt ein bestehendes Projekt aus einer Projektdatei			
Cross Referenz	2.2.4.9 Laden von Gerätedaten			
	3.3.10 Use Case LadeProjekt			
Ausnahmen(Fehler)	Falls die Projektdatei nicht gelesen werden kann			
	-> Fehleranzeige.			
Output	Geladenes Projekt			
Vorbedingungen	• Bereits geöffnete Projekte müssen zuerst			
	geschlossen werden.			
Nachbedingungen	Das Projekt wurde aus der Projektdatei geladen.			
	Alle sich im Projekt befindlichen Geräte wurden			
	aus der Projektdatei geladen.			
	Das Projekt und die Geräte werden angezeigt.			

3.6.9 speichereProjekt

Name	speichereProjekt		
Verantwortlichkeiten	Speichert ein bestehendes Projekt in eine		
	Projektdatei.		
Cross Referenz	2.2.4.8 Speichern von Gerätedaten		
	3.3.11 Use Case SpeichereProjekt		
Ausnahmen(Fehler)	Falls die Projektdatei nicht geschrieben werden		
	kann -> Fehleranzeige.		
Output	Projektdatei		
Vorbedingungen	Das Projekt muss Geräte enthalten.		
Nachbedingungen	• Das Projekt wurde in eine Projektdatei		
	gespeichert.		
	Alle sich im Projekt befindlichen Geräte wurden		
	in die Projektdatei gespeichert.		

3.6.10 schliesseProjekt

Name	schliesseProjekt
Verantwortlichkeiten	Schliesst das geöffnet Projekt.
Cross Referenz	3.3.12 Use Case SchliesseProjekt
Ausnahmen(Fehler)	-
Output	-
Vorbedingungen	• Es muss ein geöffnetes Projekt vorhanden sein.
Nachbedingungen	Das Projekt wurde geschlossen.
	Die Arbeitsfläche ist leer.

3.6.11 zeigeKalibrierzertifikat

Name	schliesseProjekt			
Verantwortlichkeiten	Zeigt das Kalibrierzertifikat des ausgewählten			
	Gerätes an.			
Cross Referenz	2.2.2.3 Kann-Kriterien			
	3.3.13 Use Case zeigeKalibrierzertifikat			
Notizen	optional			
Ausnahmen(Fehler)	-			
Output	-			
Vorbedingungen	• Es muss ein Kalibrierzertifikat für das gewählte			
	Gerät vorhanden sein.			
Nachbedingungen	Das Kalibrierzertifikat wird angezeigt.			

3.6.12 aktualisiereKalibrierzertifikat

Name	schliesseProjekt
Verantwortlichkeiten	Aktualisiert und ergänzt die Kalibrierzertifikate.
Cross Referenz	2.2.2.3 Kann-Kriterien
	3.3.14 Use Case aktualisiereKalibrierzertifikate
Notizen	optional
Ausnahmen(Fehler)	-
Output	-
Vorbedingungen	Keine
Nachbedingungen	 Die Kalibrierzertifikate wurden ergänzt oder aktualisiert.

3.7 Review / Entscheidungen

3.7.1 Entscheidung

Ich habe mich Entschieden die Punkte 3.6.11 zeigeKalibrierzertifikat und 3.6.12 aktualisiereKalibrierzertifikat noch nicht zu realisieren, da diese Punkte den vorgegebenen Zeitrahmen sprengen würden.

Ein weiterer Punkt ist, dass die Firma Trafag die Daten nicht in der gewünschten Form vorliegen hat und ich deshalb dort auch noch etliche Zeit investieren müsste.

4 Design

4.1 Systemarchitektur

4.1.1 Zielsystem

Hardware: Personal Computer Betriebssystem: Windows 2000/XP

Ich haben diese Konfiguration gewählt, weil sie den Vorgaben in den Anforderungsspezifikationen entsprechen.

4.1.2 Schnittstellen

Benutzeroberfläche: Windows

Datenhaltung: Datei, Registry

Andere Systeme: Serielle Schnittstelle

Für die Datenhaltung habe ich mich für Datei und Registry entschieden. Die Datei verwende ich für die Projekt- und Gerätedaten und die Speicherung realisiere ich mit der Serialisierung der MFC.

Die Registry verwende ich für die Speicherung der Konfigurationsdaten. Die Registry eignet sich hier besonders, da sich bei ihr die Paramerter einzeln und indexiert ansprechen lassen.

Ein weiterer Vorteil gegenüber einer Datei ist der einheitliche Zugriff und die benutzerbezogene Konfiguration.

4.1.3 Entwicklung

Entwicklungsumgebung: Visual Studio .NET 2003

Programmiersprache: VC++

Klassenbibliotheken: STL, MFC

Ich verwende die Entwicklungsumgebung von Mircosoft Visual Studio .NET 2003 da sie die aktuellste Enwicklungsumgebung von Microsoft ist und ich auf ihr, besonders mit VC++ und MFC, relativ viel Erfahrung habe.

Als Klassenbibliotheken verwende ich hauptsächlich die MFC. Für besondere Funktionen wie z.B. Mathematikfunktionen verwende ich die STL.

4.2 User Interface

4.2.1 Hauptfenster

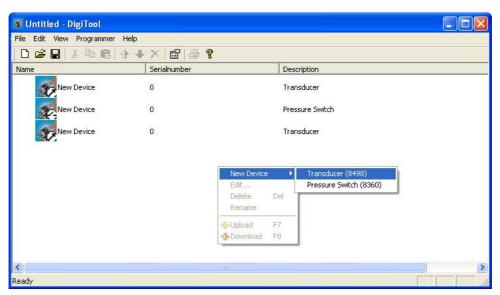


Abbildung 20

4.2.2 Menu

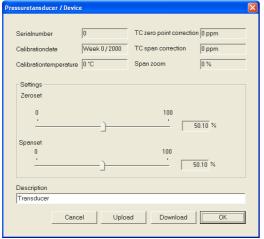
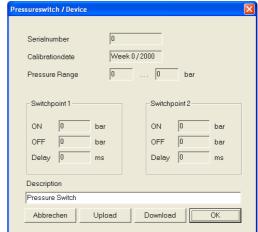

4.2.3 Konfigurationsdialog

Abbildung 26 Konfigurations Dialog

4.2.4 Gerätedialoge



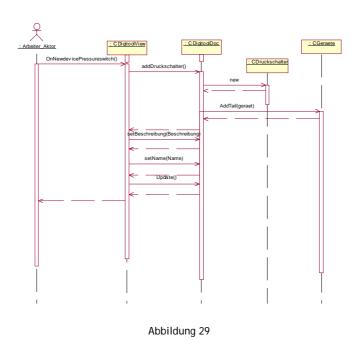
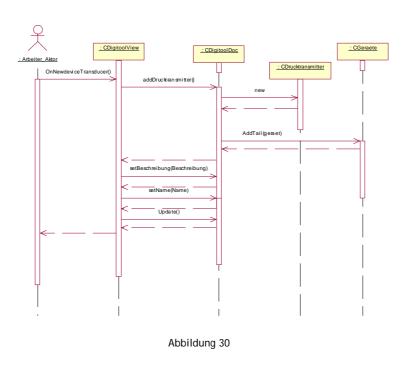

Abbildung 27 Drucktransmitter Dialog

Abbildung 28 Druckschalter Dialog



4.3 Interaktionsdiagramme

4.3.1 erstelleDruckschalter

4.3.2 erstelleDrucktransmitter

4.3.3 aendereGeraet

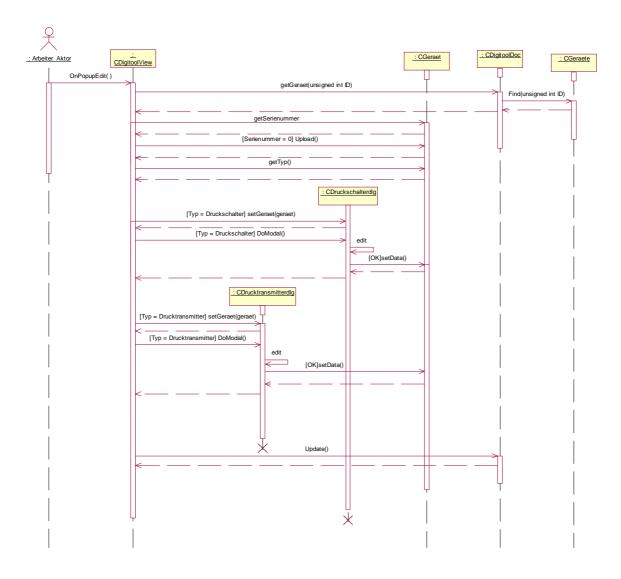


Abbildung 31

4.3.4 downloadeGeraetedaten

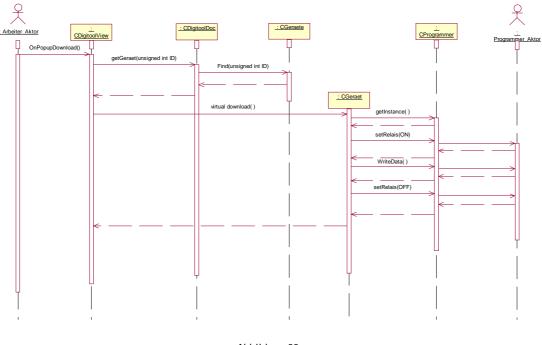
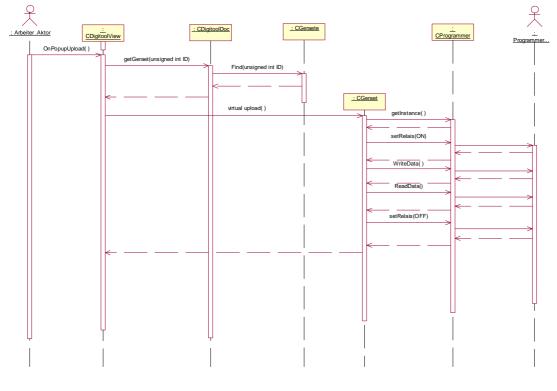



Abbildung 32

4.3.5 uploadeGeraetedaten

4.3.6 loescheGeraet

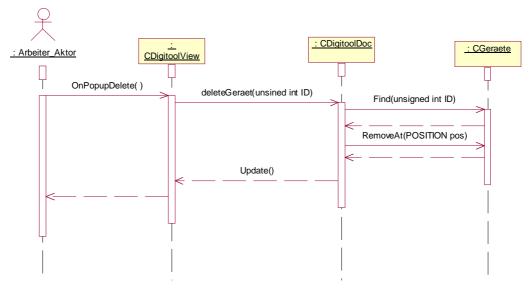
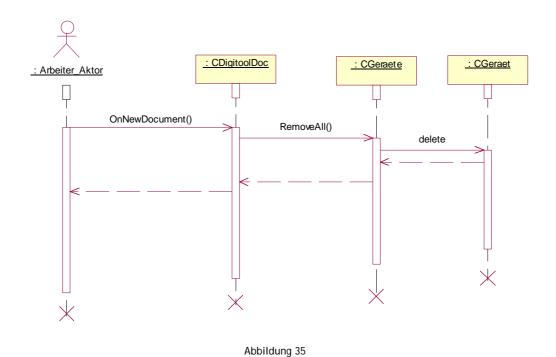



Abbildung 34

4.3.7 eroeffneProjekt

4.3.8 oeffneProjekt

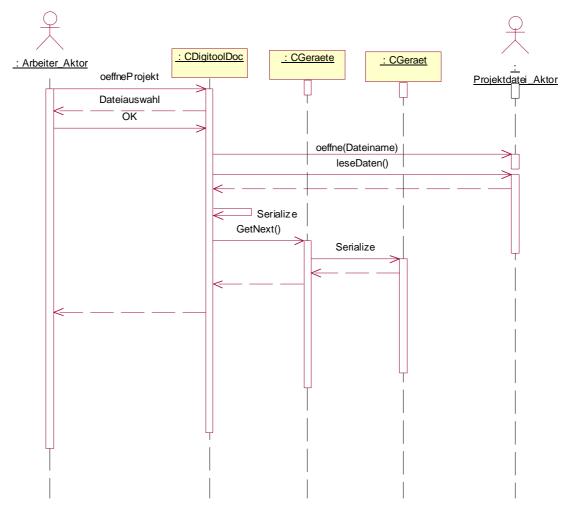
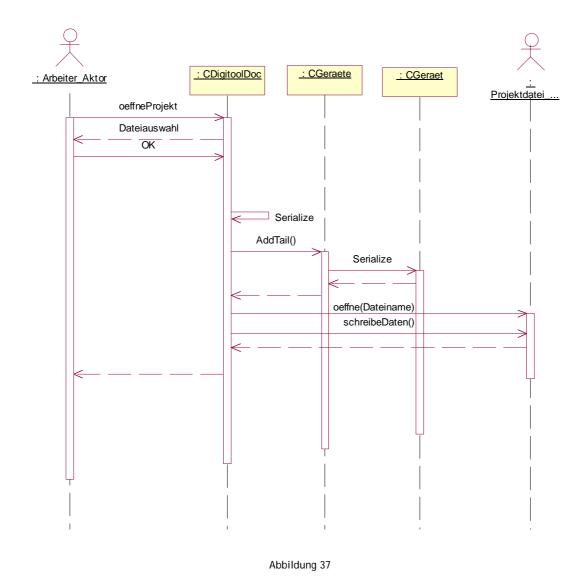



Abbildung 36

4.3.9 speichereProjekt

4.3.10 konfiguriereHW

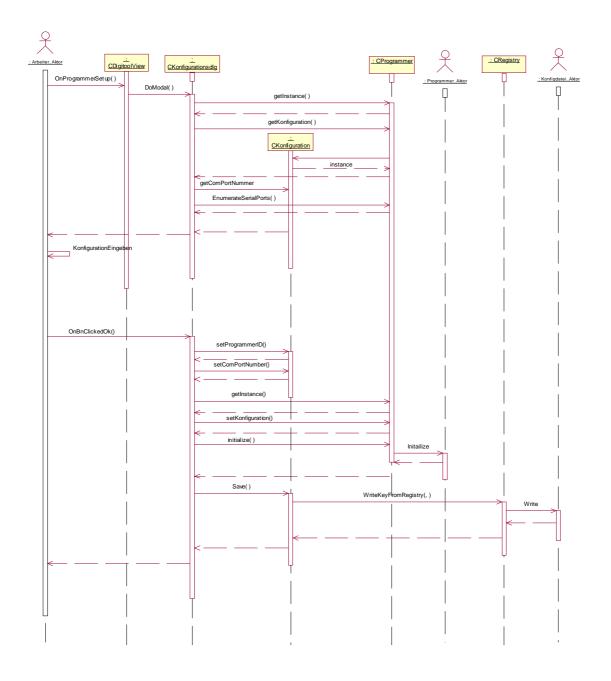


Abbildung 38

4.3.11 initialisiereHW

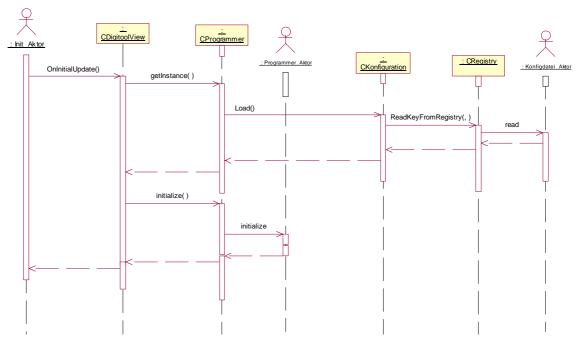


Abbildung 39

4.3.12 Package Diagramm

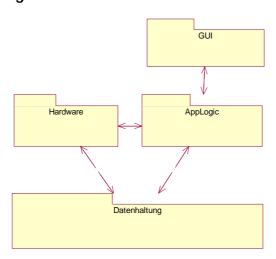


Abbildung 40

4.4 Design Klassendiagramm

4.4.1 GUI

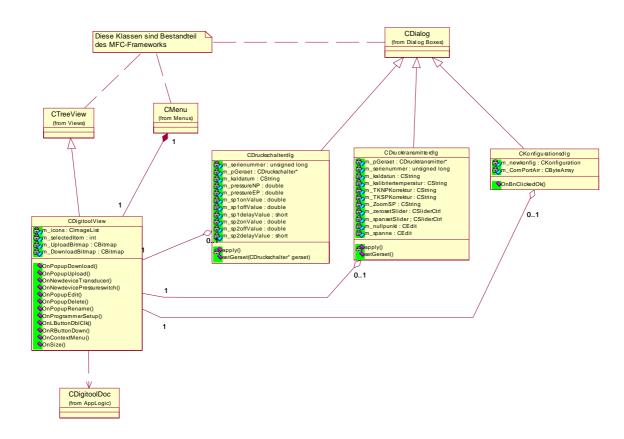


Abbildung 41

4.4.2 Application Logic

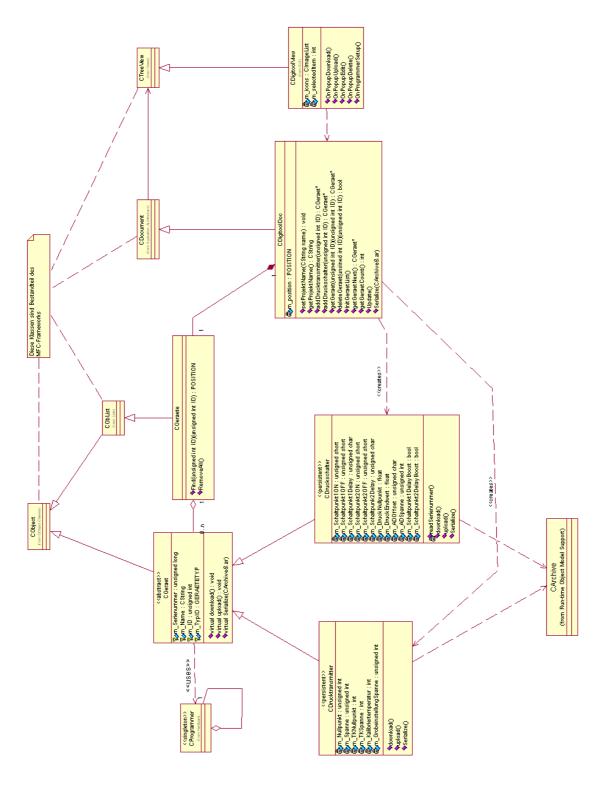


Abbildung 42

4.4.3 Hardware

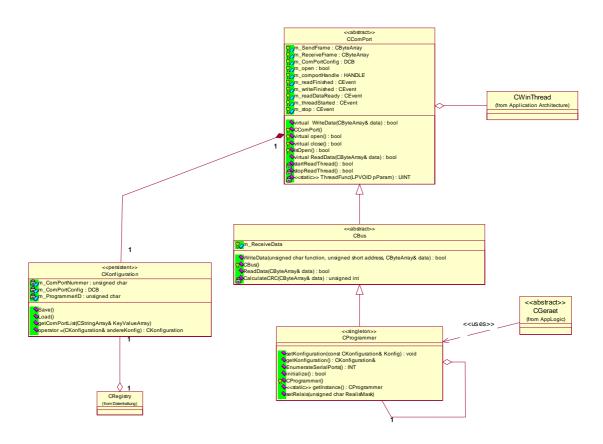


Abbildung 43

4.4.4 Datenhaltung

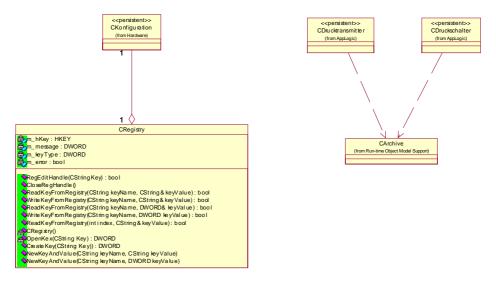
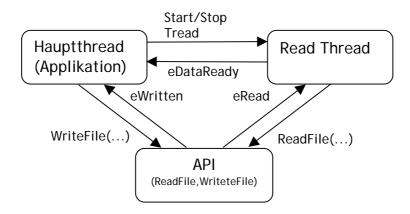


Abbildung 44

5 Implementation

5.1 Serielle Schnittstelle

Die serielle Schnittelle ist eine der grössten Herausforderungen dieser Arbeit. Da bei der Verwendung der seriellen Schnittstelle etliche Komplikationen beim Buffer-Handling auftreten können, verdient dies besondere Beachtung.


5.1.1 Threads

Um sicherzustellen das beim Lesen von der seriellen Schnittstelle auch Daten vorhanden sind, habe ich diese im Overlapped Mode geöffnet und hohle die Daten mittels eines Read-Threads ab.

Die Entscheidung ein Read-Thread zu realisieren stützt sich auf die bessere Prozessorbenutzung, welche bei einem wartenden Thread im Gegensatz zum "Pollingbetrieb", der Prozessor für andere Applikationen oder Threads zu Verfügung steht.

5.1.2 Thread-Synchronisierung

Die Thread-Synchronisierung wurde über Events realisiert, da die API-Funktionen (WriteFile, ReadFile) in der Overlapped-Struktur auch solche verwenden.

6 Test

6.1 Testmethode

Für dieses Projekt zeigt sich die Blackbox Testmethode als die am besten geeignete Methode ab.

6.2 Erreichung der Ziele

Kategorie	Kriterien	√/ ×	Bemerkung
2.2.2.1 Allgemeine Beschreibung	Das zu entwickelnde Software- produkt ermöglicht seinen Benutzern Druckmessgeräte der Firma Trafag zu konfigurieren oder nachzukalibrieren .	V	
	Das Programm kann mit Hilfe eines Programmieradapters ("Digipack") die Konfiguration der Druckmessgeräte lesen oder beschreiben.	V	
	Erstellung einer grafischen Benutzeroberfläche	✓	
	Ansteuerung des Programmier- adapters in einem Modul	☑	
	Implementierung verschiedener Geräteprofile (Druckschalter)	☑	
2.2.2.2 Muss-Kriterien	Implementierung verschiedener Geräteprofile (Analoge Drucktransmitter)	V	
	Auslesen von Gerätedaten wie Serienummer, Produktionsdatum usw.	✓	
	Speichern/Laden der Geräteparameter in eine /von einer Datei	V	
2.2.2.3	Anzeigen von digitalen Kalibrierzertifikaten (Mittels Serienummer)	×	Ist im aktuellen Ent- wicklungsstand nicht imp- lementiert. Gemäss Entscheid vom 17.06.2004.
Kann-Kriterien	Herunterladen neuer, aktueller, digitaler Kalibrierzertifikate über das Web (eine Art Live Update)	×	lst im aktuellen Ent- wicklungsstand nicht imp- lementiert. Gemäss Entscheid vom 17.06.2004.

6.3 Einsatz

Kategorie	Kriterien	√/ ×	Bemerkung
2.2.3.3	Kommt ohne zusätzliche SW aus	$\overline{\mathbf{V}}$	
Software	GUI Elemente in Englisch	$\overline{\mathbf{V}}$	
	Läuft auf Windows 2000/XP	\checkmark	
2.2.3.4 Hardware	Mindestanforderung : Desktop-PC oder Notebook mit Intelarchitektur(300MHz)	✓	

6.4 Funktionen

Kategorie	Kriterien	√/ ×	Bemerkung
2.2.4.1 Konfigurieren der Kommunikations- schnittstelle	Die Kommunikationsschnittstelle (Com-Port) muss ausgewählt werden können. Diese Einstellungen müssen	✓	In Registry
2.2.4.2 Initialisieren des Programmier- adapters ("Digipack")	abgespeichert werden. Nach der Auswahl des Com-Ports muss getestet werden, ob der Programmieradapter am aus- gewählten Port angeschlossen ist.	V	
2.2.4.3 Erzeugen eines neuen Gerätes	Ein Gerät der Arbeitsfläche hinzugefügt. Der Benutzer muss beim Erzeugen eines neuen Gerätes den Gerätetyp auswählen können. Mit dieser Auswahl wird die richtige Programmiermethode und das GUI mit dem Parametern ausgewählt.	✓✓✓	
2.2.4.4 Löschen von Geräten	Die erzeugten Geräte müssen wieder von der Arbeitsfläche entfernt werden können.	V	
2.2.4.5 Upload von Gerätedaten	Es werden über den Programmier- adapter die Geräteparameter aus dem Gerät gelesen.	V	

2.2.4.7 Download von Gerätedaten	Es werden die Geräteparameter über den Programmieradapter in das Gerät geladen.	V	
2.2.4.8 Speichern von Gerätedaten	Die Gerätedaten müssen in eine Datei gespeichert werden können.	V	In Projektdatei
2.2.4.9 Laden von Gerätedaten	Die abgespeicherten Gerätedaten müssen wieder aus einer Datei geladen werden können.	V	Aus Projektdatei

6.5 Schnittstellen

Kategorie	Kriterien	√/ ×	Bemerkung
2.2.5.1	Es muss eine vollgrafische Windowsapplikation erstellt werden.	V	
Benutzeroberfläche	Das User Interface muss den gängigen Standards für Windows- Applikationen genügen.	V	
2.2.5.2 Software	Keine Schnittstelle zu anderen Softwareprodukten	V	
2.2.5.3 Hardware	Programmieradapter verwendet Seriellen Schnittstelle (RS232) angesteuert Ansteuerung eventuell auch über Bluetooth oder USB (über Windows ComPort -Treiber).		Zusätzlich mit USB getestet.
2.2.5.4 Kommunikations- schnittstellen	Der Programmieradapter wird mit einem Modbus Protokoll gemäss Spezifikationen der Trafag AG angesteuert.	V	

6.6 Daten/Datenbank

Kategorie	Kriterien	√/ ×	Bemerkung
	Gerätedaten oder Gerätekonfig- urationen müssen in eine Datei		In Projektdatei
	abgespeichert werden können.		

6.7 Weitere Merkmale

Kategorie	Kriterien	√/×	Bemerkung
2.2.8.2 Randbedingungen im Betrieb	Es ist eine MFC ¹ (Microsoft Foundation Classes) Anwendung in C++ zu entwickeln. Der Programmieradapter muss für den Betrieb immer angeschlossen sein.		***************************************

¹ MFC = Microsoft Foundation Classes ein objektorientiertes Framework auf C++ Basis der Windows API.

7 Schlusswort

Nun ist es soweit, das Ende der Diplomarbeit ist erreicht.

Die Aufgabe war für mich eine Herausforderung, da es einige schwierige Punkte zu bewältigen gab. Die Ansteuerung der seriellen Schnittstelle und die Grafische Benutzeroberfläche erforderten mehr Beachtung als ich eingerechnet hatte.

Ebenfalls hatte ich unterschätzt wie viel Zeit bei der Implementation mit lesen von Onlinehilfen und durchforsten der MSDN¹ benötigt, ich konnte dieses Zeitdefizit jedoch gut mit den nicht benötigten Reserven von Analyse und Design kompensieren.

Ich konnte bei dieser Arbeit die in den letzten Semestern erhaltenen Theorie anwenden und in die Praxis umsetzen. Ebenfalls konnte ich von den gemachten Erfahrungen profitieren und habe mir weiteres Wissen über die Entwicklungsumgebung und die Windows-API aneignen können.

Trotz einigen Hindernissen, bin ich der Meinung mit meiner Arbeit ein gutes Projekt erarbeitet zu haben, dass sich in der Industrie verwenden lässt. Eine erste Version ist bei der Firma Trafag bereits im Test- und Piloteinsatz, es sind auch schon weitere Wüsche für Weiterentwicklungen vorhanden. Ich werde diese Software bei der Firma Trafag weiterentwickeln und betreuen.

Ich möchte an dieser Stelle meinem Betreuer Dominik Venosta und meinen Fachlehrern im 7. Semester für die tolle Unterstützung danken.

¹ MSDN = Microsoft Devloper Network (Online Hilfe der Microsoft für Entwickler im Web)

8 Literatur- und Linkverzeichnis

8.1 Softwareengineering

Autor : Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

Buchtitel : Entwurfsmuster Verlag : Addison-Wesley ISBN-Nr. : 3-8273-1862-9

Autor : Heide Balzert

Buchtitel : Lehrbuch der Objektmodellierung

Verlag : Spektrum Akademischer Verlag Heidelberg-Berlin

ISBN-Nr. : 3-8274-0285-9

Autor : Fredy Ulmer

Titel : Software Engineering (TSU Kursstoff)

Fach : Software Engineering

8.2 Programmierung C++/MFC

Autor : Davis Chapman
Buchtitel : Visual C++ .NET
Verlag : Markt+Technik
ISBN-Nr. : 3-8272-6320-4

Autor : David Kruglinski, George Sheperd, Scot Wingo

Buchtitel : Inside Visual C++

Verlag : Microsoft Press Deutschland

ISBN-Nr. : 3-86063-461-5

Titel : Windows Programmierung mit Visual C++ (TSU Kursstoff)

Fach : Windows Programmieren

Autor : Markus Burri

Titel : C++ (TSU Kursstoff)

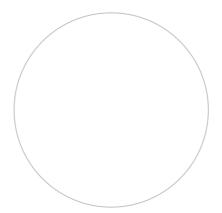
Fach : C++

8.3 Internetlinks

MSDN

Microsoft Developer Network http://msdn.microsoft.com/visualc/

CodeGuru Forum http://www.codeguru.com/forum/



9 Anhang A

9.1 CD

Inhalt:

- Source
- Setuppaket
- Dokumentation Diplomarbeit
- Dokumentation Programmieradapter "Digipack"

9.2 Arbeitspakete

9.2.1 Planung

Definition Anforderungsspezifikationen

Ziel: Anforderungsspezifikationen unter Berücksichtigung der

Aufgabenstellung und Wünsche der Firma Trafag erstellen.

Beginn geplant: 06.04.2004 Dauer geplant: 10.04.2004 Dauer ffektiv: 05.04.2004 Dauer Effektiv: 10.04.2004

Begründung der Abweichungen: -

Bestehende Dokumentation Studieren

Ziel: Bestehende Dokumentationen von der Firma Trafag über

Programmieradapter und Geräte studieren.

Klären unklarer Punkte.

Beginn geplant: 06.04.2004 Dauer geplant: 10.04.2004 Beginn effektiv: 05.04.2004 Dauer Effektiv: 10.04.2004

Begründung der Abweichungen: -

Erstellung erster Entwürfe

Ziel: Erstellung erster Skizzen (Wichtigste Highlevel Use Cases) des

Systems. Definition der Systemgrenzen.

Beginn geplant: 11.04.2004 Dauer geplant: 13.04.2004 Beginn effektiv: 05.04.2004 Dauer Effektiv: 10.04.2004

Begründung der Abweichungen: -

Vorbereitung Erste Betreuersitzung

Ziel: Aufarbeitung der Dokumentation für erste Betreuersitzung

Beginn geplant: 11.04.2004 Dauer geplant: 14.04.2004 Beginn effektiv: 05.04.2004 Dauer Effektiv: 05.04.2004

Begründung der Abweichungen: -

9.2.2 Analyse

Definition Highlevel Use Cases

Ziel: Definition der Highlevel Use Cases in Form einer Kurzbeschreibung

und finden der Aktoren.

Beginn geplant: 15.04.2004 Dauer geplant: 21.04.2004 Beginn effektiv: 12.04.2004 Dauer Effektiv: 12.04.2004

Begründung der Abweichungen: -

Definition Extended Use Cases

Ziel: Detaillierte Dokumentation jedes Use Cases inklusive Aktoren.

Beginn geplant: 22.04.2004 Dauer geplant: 28.04.2004 Beginn effektiv: 12.04.2004 Dauer Effektiv: 18.04.2004

Begründung der Abweichungen: -

Erstellung Use Case Diagramme

Ziel: Erstellung der Use Case Diagramme

Beginn geplant: 15.04.2004 Dauer geplant: 28.04.2004 Beginn effektiv: 12.04.2004 Dauer Effektiv: 18.04.2004

Begründung der Abweichungen: -

Erstellung Systemsequenzdiagramme

Ziel: Erstellung der Systemsequenzdiagramme zu jedem Use Case.

Beginn geplant: 15.04.2004 Dauer geplant: 05.05.2004 Beginn effektiv: 12.04.2004 Dauer Effektiv: 18.04.2004

Begründung der Abweichungen: -

Definition Konzeptionelles Modell

Ziel: Erstellung des konzeptionellen Modells.
Beginn geplant: 29.04.2004 Dauer geplant: 05.05.2004
Beginn effektiv: 18.04.2004 Dauer Effektiv: 09.05.2004

Begründung der Abweichungen: -

Definition Kontrakte

Ziel: Erstellung der Kontrakte

Beginn geplant: 29.04.2004 Dauer geplant: 05.05.2004 Beginn effektiv: 18.04.2004 Dauer Effektiv: 09.05.2004

Begründung der Abweichungen: -

Review / Betreuersitzung

Ziel: Abschluss der Analysephase / Betreuersitzung Beginn geplant: 11.05.2004 Dauer geplant: 11.05.2004 Beginn effektiv: 11.05.2004 Dauer Effektiv: 11.05.2004

Begründung der Abweichungen: -

9.2.3 Design

Definition Real Use Cases

Ziel: Definition und Beschreibung der Real Use Cases Beginn geplant: 14.05.2004 Dauer geplant: 20.05.2004 Beginn effektiv: 09.05.2004 Dauer Effektiv: 29.05.2004

Begründung der Abweichungen: -

Definition Systemarchitektur

Ziel: Definition der Systemarchitektur

Beginn geplant: 14.05.2004 Dauer geplant: 20.05.2004 Beginn effektiv: 09.05.2004 Dauer Effektiv: 29.05.2004

Begründung der Abweichungen: -

Definition User Interface

Ziel: Definition und Design des GUI

Beginn geplant: 21.05.2004 Dauer geplant: 27.05.2004 Beginn effektiv: 09.05.2004 Dauer Effektiv: 18.06.2004

Begründung der Abweichungen:

Auf Grund nicht geplante Zeitbeanspruchung im Fach Software Projekt und eine intensive Zeit in meiner Firma hat sich die Diplomarbeit etwas Verzögert.

Definition Interaktionsdiagramme

Ziel: Definition der Interaktionsdiagramme
Beginn geplant: 21.05.2004 Dauer geplant: 27.05.2004
Beginn effektiv: 09.05.2004 Dauer Effektiv: 18.06.2004

Begründung der Abweichungen: -

Definition Designklassendiagramm

Ziel: Definition des Designklassendiagramm. Überarbeitung durch

Anwenden von Designpatterns.

Beginn geplant: 21.05.2004 Dauer geplant: 27.05.2004 Beginn effektiv: 09.05.2004 Dauer Effektiv: 18.06.2004

Begründung der Abweichungen: -

Review / Bereuersitzung

Ziel: Abschluss der Designphasephase / Betreuersitzung

Beginn geplant: 28.05.2004 Dauer geplant: 04.05.2004 Beginn effektiv: 17.06.2004 Dauer Effektiv: 17.06.2004

Begründung der Abweichungen: -

9.2.4 Implementation

Erstellung der Klassendefinition

Ziel: Erstellung der Klassendefinition und Schnittstellen in MFC gemäss

Designklassendiagramm

Beginn geplant: 05.06.2004 Dauer geplant: 11.06.2004 Beginn effektiv: 17.06.2004 Dauer Effektiv: 20.06.2004

Begründung der Abweichungen: -

Implementierung der Methoden

Ziel: Implementierung der Methoden der Applikationslogik.

Beginn geplant: 12.06.2004 Dauer geplant: 25.06.2004 Beginn effektiv: 17.06.2004 Dauer Effektiv: 29.06.2004

Begründung der Abweichungen: -

Erstellung des User Interfaces

Ziel: Erstellung und Design des GUI. Implementierung der GUI-Klassen und

Methoden.

Beginn geplant: 12.06.2004 Dauer geplant: 25.06.2004 Beginn effektiv: 09.05.2004 Dauer Effektiv: 18.06.2004

Begründung der Abweichungen: -

Review / Bereuersitzung

Ziel: Abschluss der Implementation / Betreuersitzung
Beginn geplant: 26.06.2004 Dauer geplant: 29.06.2004
Beginn effektiv: 06.07.2004 Dauer Effektiv: 06.07.2004

Begründung der Abweichungen: -

9.2.5 Tests

Testplanung

Ziel: Erstellung der Testcheckliste

Beginn geplant: 30.06.2004 Dauer geplant: 06.07.2004 Beginn effektiv: 05.07.2004 Dauer Effektiv:12.07.2004

Begründung der Abweichungen: -

Testausführung

Ziel: Testausführung gemäss Testcheckliste
Beginn geplant: 07.07.2004 Dauer geplant: 20.07.2004
Beginn effektiv: 12.07.2004 Dauer Effektiv: 02.08.2004

Begründung der Abweichungen: -

Korrekturen der Fehler

Ziel: Korrekturen allfälliger Fehler

Beginn geplant: 07.07.2004 Dauer geplant: 20.07.2004 Beginn effektiv: 12.08.2004 Dauer Effektiv: 12.08.2004

Begründung der Abweichungen: -

9.2.6 Dokumentation

Dokumetationsvorlage erstellen

Ziel: Dokumentationsvorlage im Microsoft Word erstellen

Beginn geplant: 01.04.2004 Dauer geplant: 05.04.2004 Beginn effektiv: 01.04.2004 Dauer Effektiv: 05.04.2004

Begründung der Abweichungen: -

Fortwährende Dokumentation

Ziel: Laufendes Dokumentieren jedes Entwicklungsschrittes.

Beginn geplant: 05.04.2004 Dauer geplant: 18.07.2004 Beginn effektiv: 05.04.2004 Dauer Effektiv: 12.08.2004

Begründung der Abweichungen: -

Zusammenstellen der Dokumentation

Ziel: Zusammenstellen der gesamten Dokumentation. Ergänzung fehlender

Teile.

Beginn geplant: 21.07.2004 Dauer geplant: 03.08.2004 Beginn effektiv: 12.08.2004 Dauer Effektiv: 14.08.2004

Begründung der Abweichungen: -

Reinlesen der Dokumentation / Betreuersitzung

Ziel: Reinlesen der gesamten Dokumentation. Abschluss der

Dokumentation.

Beginn geplant: 21.07.2004 Dauer geplant: 11.08.2004 Beginn effektiv: 14.08.2004 Dauer Effektiv: 14.08.2004

Begründung der Abweichungen: -

Vorbereitungen zur Abgabe

Ziel: Drucken der Dokumentation und erstellen der Projekt CD mit allen

Projektdateien. Abschluss der Projektarbeit.

Beginn geplant: 14.08.2004 Dauer geplant: 16.08.2004 Beginn effektiv: 14.08.2004 Dauer Effektiv: 16.08.2004

Begründung der Abweichungen: -

Abgabe der Dokumentation

Ziel: Dokumentation abgeben

Beginn geplant: 17.08.2004 Dauer geplant: 17.08.2004 Beginn effektiv: 17.08.2004 Dauer Effektiv: 17.08.2004

9.3 Bestimmungen für die Diplomarbeit

Bestimmungen für die Diplomarbeit

1. Zweck der Bestimmungen

Diese allgemeinen Bestimmungen gehören mit zur Aufgabenstellung der Diplomarbeit. Sie haben den Zweck den Ablauf der Diplomarbeit im Detail zu regeln.

2. Zielsetzungen der Diplomarbeit

- Durch eine Vertiefung in einem Spezialgebiet, soll das Studieren und selbständige Erarbeiten von Grundlagen praktiziert werden.
- Der Diplomand soll die erworbenen Kenntnisse in der Projektführung praktisch erproben, indem er das Projekt "Diplomarbeit" selbständig durchführt.
- Die Diplomarbeit soll von praktischem Nutzen sein. Dadurch kann die Motivation und Freude gef\u00f6rdert werden.

3. Themenvorschläge

Am Ende des 6. Semester werden alle Diplomanwärter eingeladen, 2 Vorschläge für die Diplomarbeit zu machen. Diese Vorschläge können aus dem persönlichen Interessengebiet sein, von der Arbeitgeberfirma stammen, oder aus der Themenliste entnommen werden. Die Themenliste wird im Sekretariat geführt und ist ein Pool der Vorschläge von Fachlehrern, Institutionen und Firmen. Sie wird den Diplomanwärtern zur Auswahl zugestellt.

Die Arbeit sollte möglichst ein in sich abgeschlossenes Thema darstellen. Insbesondere muss die Arbeit bei der Vorführung im Schulhaus aufgebaut und funktionell vorgeführt werden können. Bei Arbeiten aus dem persönlichen Interessengebiet muss folgendes berücksichtigt werden: Das Produkt der Arbeit soll in dieser Form nicht bereits käuflich sein. Das Thema soll praxisnah sein und realisierbaren, konkret spezifizierten Vorstellungen entsprechen.

Bei Arbeiten von der Arbeitgeberfirma gilt es folgendes zu berücksichtigen: Der Inhalt der Arbeit soll vom alltäglichen Know-how der Firma wesentlich abweichen. Nicht möglich ist z.B. eine Arbeit über die Weiterentwicklung eigener Serieprodukte. Die Arbeit soll vielmehr einen technischen Neuigkeitsgrad, Grundlagen für ein neues Konzept, Einsatz neuerer Technologien usw. im Sinne einer Studien- oder Grundlagenarbeit beinhalten. Eine reine Studienarbeit ist aber nicht möglich. Es muss in jedem Fall eine Realisierung gemacht werden (Muster, Prototyp, erste Software-Version).

4. Themenfestlegung

Die Schulleitung (Schulleiter und Abteilungsleiter) prüft die Vorschläge, stellt Rückfragen und macht eventuell weitere Anregungen im Gespräch mit den Studenten. Die Schulleitung entscheidet dann über das Thema und ordnet einen Betreuer zu.

5. Betreuer

Der Betreuer kann ein Fachlehrer der TSU oder ein Vorgesetzter der Arbeitgeberfirma mit einer höheren Ausbildung sein. Der Studierende kann mit den Themenvorschlägen auch einen Betreuer vorschlagen.

Der zugeteilte Betreuer verfasst die Aufgabenstellung. Diese schickt er zur Begutachtung an den zugeteilten Experten. Nach der Reaktion des Experten wird die reingeschriebene Aufgabenstellung vom Betreuer unterschrieben und an das Sekretariat geschickt. Die Austeilung der Aufgabenstellung erfolgt gemäss Terminplan durch das Sekretariat.

Während der Arbeitsausführung müssen in regelmässigen Abständen mindestens 4 Besprechungen durchgeführt werden. Der Betreuer macht sich Besprechungsnotizen. Beschlüsse werden gegenseitig unterzeichnet. Der Betreuer visiert die Besprechung unter Punkt 15 dieser Bestimmungen. Der Arbeitsverlauf kann kurzfristig zusätzliche Besprechungen erfordern. Telefongespräche gelten nicht als Besprechungen.

Der Betreuer ist kein Fachberater, kennt sich aber in der Materie so gut aus, dass er den Diplomanden durch das Projekt begleiten kann. Er fördert das selbständige Arbeiten des Diplomanden, überwacht den zeitlichen Ablauf und fällt allenfalls notwendige Abweichungsentscheide von der Aufgabenstellung.

Nach der Abgabe korrigiert und bewertet der Betreuer die Arbeit eingehend anhand des Formulars "Beurteilungshilfsblatt Diplomarbeit". Drei Tage vor der Präsentation faxt der Betreuer sein Bewertungsformular an den Experten. Auf Verlangen schickt er auch seine Besprechungsnotizen.

Der Betreuer nimmt zusammen mit dem Experten an der Präsentation der Arbeit durch den Diplomanden teil und bespricht die Notengebung mit dem Experten.

6. Zulassung, Randbedingungen

Zur Diplomarbeit zugelassen wird, wer gemäss den Promotionsbestimmungen im 7. Semester studiert

Es ist nicht gestattet, für Diplomarbeiten irgendwelche Entschädigungen von Auftraggebern entgegenzunehmen. Die Abwicklung der Diplomarbeit erfolgt gemäss einem separaten, jährlich neuen Terminplan.

7. Experte

Anlässlich der Expertensitzung werden die Themen nach Fachkenntnissen eingeteilt, sodass jeder Experte zirka 3 Arbeiten hat. Der Experte macht eventuelle Anregungen oder Einschränkungen und begutachtet die Aufgabenstellung des Betreuers.

Anhand der abgegebenen Dokumentation macht der Experte eine unabhängige Bewertung der Arbeit. Die Experten treffen sich vor der Präsentation und vergleichen die Arbeiten untereinander, damit eine möglichst ausgeglichene Bewertung erzielt wird.

Während der Präsentation hat der Experte die Leitung. Anschliessend an die Präsentation wird die Note durch den Experten und Betreuer endgültig berechnet und festgelegt.

8. Ausführung der Arbeit

Die Erarbeitung der Diplomarbeit erfolgt schul- und berufsbegleitend während der zweiten Hälfte des Diplomsemesters und einer zusätzlichen Frist. Nachdem der Diplomand Aufgabenanalyse, Vorstudie, Voruntersuchungen und Terminplan erstellt hat, vereinbart er mit dem Betreuer die erste Besprechung. Diese muss spätestens 6 Wochen nach der Austeilung der Aufgabenstellung stattfinden

Umfang der Arbeit

Der zeitliche Umfang der Arbeit soll 200 Stunden nicht überschreiten. Bei grösserem Umfang soll die Arbeit im Team gemacht werden. Der selber verfasste Text (ohne Anhang) darf bei reinen Softwareaufgaben maximal 60 Seiten, bei allen übrigen Arbeiten maximal 80 Seiten umfassen. Es wird erwartet, dass die Arbeit in der Freizeit gemacht wird. Falls eine Firma bezahlte Arbeitszeit zur Verfügung stellt, muss sie unter Punkt 15 ausgewiesen und vom Vorgesetzten visiert werden.

10. Abgabe der Arbeit

Die Abgabe der Diplomarbeit erfolgt in zweifacher Ausführung, mit allen Unterschriften unter Punkt 15 dieser Bestimmungen versehen, an das Sekretariat. Bei Arbeiten mit Software muss ein Datenträger mit kompilierbarer Source und ausführbarem Programm beiliegen.

Der Termin ist gemäss Angabe der Schulleitung. Als Datum gilt dasjenige der Überbringung, bzw. Datum des Poststempels. Zu spät abgegebene Arbeiten werden nicht angenommen, womit ein Diplomabschluss im gleichen Jahr nicht möglich ist. Eine Wiederholung der Diplomarbeit mit einem anderen Thema ist gemäss Promotionsordnung möglich.

11. Vorführung der Arbeit

Die Arbeit wird gemäss Diplom-Prüfungsplan der Schulleitung dem Experten und Betreuer vorgeführt. Der Diplomand kann während maximal 15 Minuten die Arbeit in der Funktion und Ausführung vorführen. Während der restlichen 15 Minuten stellt der Experte Fragen. Diese können auch globaler Art sein (Umfeld der Arbeit, andere Lösungsvarianten).

12. Notenbekanntgabe

Dem Diplomanden wird die Bewertung der Hauptkriterien schriftlich bekanntgegeben. Falls der Diplomand detailliertere Auskünfte über die Bewertung will, kann er diese, innerhalb einer Woche nach dem Prüfungstag, beim Betreuer oder Experten nachfragen.

13. Eigentum der Arbeit

Eine abgegebene Dokumentation bleibt im Eigentum der Schule und kann weiteren Studierenden zugänglich gemacht werden. Die Weiterverwendung darf nur zu Studienzwecken und nicht zu gewerblich- industrieller Nutzung erfolgen. Bei Arbeiten für die Arbeitgeberfirma, oder bei wirtschaftlichen Interessen des Diplomanden verpflichtet sich die Schule zur Geheimhaltung, falls diese gewünscht wird.

3/3

Die Arbeit und das erworbene Wissen sind Eigentum des Diplomanden und je nach Beteiligung, eventuell auch der Arbeitgeberfirma.

14. Rekurs

Lassen sich Unstimmigkeiten oder Streitigkeiten in der Bewertung nicht direkt oder mit Hilfe der Schulleitung lösen, ist ein Rekurs möglich. Dieser muss schriftlich, mit Begründungen, innert 14 Tagen nach Bekanntgabe der Noten an den Präsidenten der Aufsichtskommission eingereicht werden.

15. Bestätigungen und Unterschriften

Freigabe: Schulletung TSU / 4.5.2000 C:(Daten)Dokumente(TSU)4)Bestimmungen DA TS.doc

15.1 Besprechungen Betreuer mit Diplomand

Besprechung	Datum	Visum	Bemerkungen
1			
2			
3			
4			
5			
6			

T40505.04

9.4 Protokolle der Betreuersitzungen

Technikerschule Uster TSU Protokoll Betreuungssitzung Nr: 1 Diplomarbeit Art der Arbeit Student Marco Di Menco Betreuer Dominik Venosta Thema Kalibriertool für Drucktransmitter Ort, Datum, Zeit Wald, 12.5.2004 Arbeitsstand Pflichtenheft erststellt Analyse bereits teilweise erstellt Probleme, Fragen Umfang der Analyse (Rückfrage mit Marcel Müller) Weiteres Vorgehen Analyse vervollständigen Design erstellen Beschlüsse Nächster Termin Nach Absprache Der Betreuer gibt dem Studenten jeweils eine Kopie. Er sammelt die ausgefüllten Protokolle und bewahrt sie auf bis 1 Monat nach der Präsentation (Ablauf Rekursfrist). 2.5.200 2.5.2001, HM Unterschrift Betreuer Unterschrift Student D. Vinla Man Di M

Marco Di Menco IX 13.August.2004

Technikerschule Uster

TSU

Protokoll Betreuungssitzung Nr: 2

Art der Arbeit	Diplomarbeit
Student	Marco Di Menco
Betreuer	Dominik Venosta
Thema	Kalibriertool für Drucktransmitter
Ort, Datum, Zeit	Wald, 17.6.2004

Arbeitsstand	Analyse vollständig Design vollständig Implementierung begonnen
Probleme, Fragen	
Weiteres Vorgehen	Implementierung weiterfahren
Beschlüsse	
Nächster Termin	Nach Absprache

Der Betreuer gibt dem Studenten jeweils eine Kopie. Er sammelt die ausgefüllten Protokolle und bewahrt sie auf bis 1 Monat nach der Präsentation (Ablauf Rekursfrist). 2.5.2001, нм

Unterschrift Betreuer

Unterschrift Student

D. Vinla Man Din

Technikerschule Uster

TSU

Protokoll Betreuungssitzung Nr: 3

Art der Arbeit	Diplomarbeit
Student	Marco Di Menco
Betreuer	Dominik Venosta
Thema	Kalibriertool für Drucktransmitter
Ort, Datum, Zeit	Wald, 6.7.2004

Arbeitsstand	Implementierung bis auf einige Details fertig Programm am testen
Probleme, Fragen	
Weiteres Vorgehen	Dokumentation fertigstellung und nochmals überarbeiten
Beschlüsse	
Nächster Termin	Nach Absprache

Der Betreuer gibt dem Studenten jeweils eine Kopie. Er sammelt die ausgefüllten Protokolle und bewahrt sie auf bis 1 Monat nach der Präsentation (Ablauf Rekursfrist). 2.5.2001, нм

Unterschrift Betreuer

Unterschrift Student

D. Junta How Di Man

_					
100	nnı	kersc	hiil	01	CTOP
1 60		10136	IUI	- 0	Ster

TSU

Protokoll Betreuungssitzung Nr: 4

Art der Arbeit	Diplomarbeit
Student	Marco Di Menco
Betreuer	Dominik Venosta
Thema	Kalibriertool für Drucktransmitter
Ort, Datum, Zeit	Wald, 12.8.2004

Arbeitsstand	Projekt fertig
Probleme, Fragen	Aufbau und Inhalt der Präsentation
Weiteres Vorgehen	
Beschlüsse	
Nächster Termin	keine

Der Betreuer gibt dem Studenten jeweils eine Kopie. Er sammelt die ausgefüllten Protokolle und bewahrt sie auf bis 1 Monat nach der Präsentation (Ablauf Rekursfrist). 2.5.2001, HM

Unterschrift Betreuer

Unterschrift Student

D Vanda

10 Anhang B

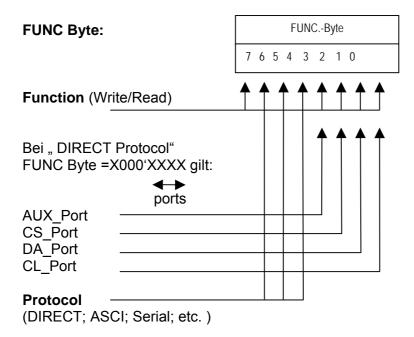
10.1 Dokumentation Programmieradapter "Digipack"

Kommunikationsprotokoll für Protokollkonverter DIGI-PACK

(DGP_V1-1)

Normal Protocol:

Read - Cycle:


	_	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Request		ID.No.	FUNC.	Address		Numb. of Bytes		CRC 16		
	_	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH

Read liest *Numb. Of Bytes* Bytes beginnend bei *Address* aus dem entsprechenden Speicher. ID.NO ist die Identifikationsnummer des Messkanals. CRC16: Berechnete Checksumme nach dem gleichnamigen Verfahren.

Write - Cycle:

		Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.	No.	FUNC.	Address		Numb. of Bytes		n - Bytes	CRC 16	
				,						
		Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Replay	ID.	No	FUNC.	Address		Numb. of Bytes		CRC 16		

Write schreibt *Numb. Of Bytes*, welche in *n-Bytes* stehen beginnend bei *Address* in den entsprechenden Speicher.

 000:
 DIRECT
 100:
 not used

 001:
 ASIC
 101:
 not used

 010:
 UART/SPI/I2C
 110:
 not used

 011:
 CAN
 111:
 HARDWARE

Definition:

Kommunikation:

Alle Daten werden über einen Buffer von 1024 Byte geschrieben und gelesen. Deshalb können Datenblöcke, welche grösser als 1024 Byte sind, nicht in einer Sequenz geschrieben werden!

Das Protokollende wird durch den Empfang eine Lücke von mehr als 3 Bytelängen definiert!

Identitäts-Nummer:

Den Zugriff auf die entsprechenden Plätze wird über die Id.Nr. gehändelt.

Id.Nr. = 0 adressiert alle Plätze gleichzeitig. Jedoch antwortet nur das Pack mit der Id.Nr. 1. Id.Nr. = Pack-ID adressiert alle Plätze auf dem jeweiligen Pack.

Die Id.Nr. sind dem Platz entsprechend verteilt und werden durch die auf dem Pack vordefinierten ID-Switch (Lötbrücken) oder durch die im EEProm gespeicherten Werte wie folgt bestimmt.

Id.Nr. = (ID-Switch * 6) + 1

Die Pack-ID werden ebenfalls durch die auf dem Pack vordefinierten ID-Switch (Lötbrücken) bestimmt:

Pack-ID = (ID-Switch +201)

Der ID-Switch besteht aus den Adressen D7...D3 (0...31).

D2 definiert beim Starten ob das **EEProm (D2=1)** oder die **Lötbrücken (D2=0)** gelten. Alternativ kann die Id.Nr. auch über die Software oder durch die Daisy-Chain vergeben werden. Dabei kann über das **HARDWARE-Protokoll** die **Start-ID** (Id.Nr. des ersten Platzes) und die **Pack-ID** unabhängig vergeben werden.

Beim Daisy-Chain ist jeweils das Pack, bei welchem der **Daisy-In auf <u>Low</u>** und bei welchem der **Daisy-Out auf <u>High</u>** ist, über die Daisy-ID ansprechbar. Die Daisy Ein/Ausgänge können im Hardware-Protokoll manipuliert werden.

Daisy-ID = (255)

Baudrate:

Die Baudrate wird durch die auf dem Pack vordefinierten BAUD-Switch (Lötbrücken) bestimmt:

Die Baudrate wird durch die Adressen **D1...D0** wie folgt definiert:

<u>D</u>	<u>1 D0</u>	
0	0	9600 Baud
0	1	19200 Baud
1	0	57600 Baud
1	1	115200 Baud

D2 definiert beim Starten ob das EEProm (D2=0) oder die Lötbrücken (D2=1) gelten.

Parity und CRC:

Die Parität muss beim Master auf **ODD** = ungerade eingestellt werden. Die CRC-Cheksumme wird nach CRC16 mit dem Generator-Polynom 1010 0000 0000 0001 = A001H berechnet.

Errorhandling:

Entdeckt die Kommunikationsroutine irgendwo im Protokoll einen Fehler, so bricht sie die Kommunikation ab und setzt einen entsprechenden ErrorCode, welcher mittels ErrorRead ausgelesen werden kann. Es wird also im Fehlerfall kein REPLAY gesendet. Die Anwenderroutine wird auch nur nach korrekter Übertragung (no CRC Error) ausgeführt.

Das **Status**-Byte kann wie folgt gesetzt sein:

00 h	No error	(Kein Fehler bei vorgängiger Übertragung)
01 h	Timeout error	(letzte Verabeitung abgebrochen)
02 h	Busy error	(letzte Verarbeitung nicht fertig)
03 h	Buffer overflow error	(DatenBuffer überlaufen)
04 h	Parity error	(Parität falsch)
05 h	CRC error	(Checksumme falsch)
06 h	Protocol low data error	(zu wenig Byte empfangen)
07 h	Protocol overrun error	(zu viele Byte empfangen)

Bei ungültigen Funktionscode oder sonstigen Fehlern in den Anwenderroutinen wird im Replay immer im **FUNC.-Byte [FFh]** (Indikation Applikationserror) und in den **Address-Bytes** der empfangene **Funktionscode** und den applikationsspezifischen **Errortyp** (Applikationserror) zurückgesendet.

Die **Address**-Bytes werden bei ungültigem Funktionscode, ungültiger Addresse oder ungültigen Daten mit folgendem Inhalt gesendet:

Address-Low: FUNC received Function-Code

Address-High: 00 h unknow Function error

01 h incorrect Address 02 h incorrect Data

Application Error Frame

Byte	Byte	Byte	Byte	LOW	HIGH	LOW	HIGH
ID.No.	FFh for Error	FUNC.	Error Code	Numb. (of Bytes 00h)	CRO	C 16

SERIAL-Protokoll

Read SERIAL-INFO

[20h]

		Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Reques	t	ID.No.	FUNC. (Baud)	Add 00	ress 00		of Bytes ¹⁰²	n – Bytes	CR	C 16

	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Replay	ID.No.	FUNC.	Add	ress	Numb.	of Bytes	CRO	C 16

Read SERIAL-INFO gibt die Anzahl empfangener Bytes als **Int16** an. Direkt nach einem Senden (z.B durch Write-UART) wird der Buffer mit dem

entsprechenden Counter-Wert gefüllt. Dieser Wert kann mit dem Befehl *Read SERIAL-INFO* aus dem Buffer ausgelesen werden.

Read SERIAL

[21h]

	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Request	ID.No.	FUNC.		ress 00	Numb.	of Bytes	CRO	C 16

	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay	ID.No.	FUNC.	Add	ress	Numb. (of Bytes	n – Bytes	CRO	C 16

Read-SERIAL liest die vom letzen Write-Befehl gelesenen Daten aus dem Buffer. Numb. of Bytes müssen mit den zu erwartenden Daten übereinstimmen, oder kleiner als diese sein, sonst wird ein Applikationserror zurückgegeben.

Send UART

[A0h]

	Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.No.	FUNC.	Address BAUD & P & S & Delay		Numb. of Bytes		n – Bytes	CRO	C 16
				<u> </u>					
	Duto	MCD 1s	LOW	шси	LOW	шси	LOW	шси	1

	_	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Replay		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	CRO	C 16

Send UART sendet die *n*-Bytes direkt an den UART-Ausgang (**CL-PORT**) des Packs. Das Startbit wird LOW (0V) ausgegeben.

Über "Address" wird der **UART-Mode** bestimmt. Dabei kann die Baudrate, Parität, Stopbit und der Interframe-Space bestimmt werden.

Interframe Space definiert die Pause (in **0.1ms**) zwischen den zusendenden Senderahmen (10/11-Bit Paketen).

Direkt nach dem Senden wird der Buffer mit den empfangnen UART-Daten gefüllt. Dabei wartet der Empfangsport (**DA_PORT**) auf ein Startbit. Es wird jeweils 4 Bytelängen jedoch maximal 35.6ms **und** auf eine Aktivität der DIGI-PACK-Schnittstelle gewartet. Diese empfangenen Werte können danach mit dem Befehl *Read SERIAL* aus dem Buffer ausgelesen werden.

UART-Mode

Baudrate	Address				
	HIGH-Byte				
	(Bit 74)				
150 Baud	0000	0xh			
300 Baud	0001	1xh			
600 Baud	0010	2xh			
1200 Baud	0011	3xh			
2400 Baud	0100	4xh			
4800 Baud	0101	5xh			
9600 Baud	0110	6xh			
19200 Baud	0111	7xh			
not used	10001111	-			

Parity	Stopbit	Address				
		HIGH-Byte				
		(Bit 32)				
None	1 Stop-Bit	00				
None	2 Stop-Bit	01				
Even	1 Stop-Bit	10				
Odd	1 Stop-Bit	11				

Interframe-Space	Addres	SS		
_	HIGH & LO\	N-Byte		
	(Bit 10 & 70)			
1 Unit = 0.1 ms	XX XXXX'XXXX	01023		

Send RS232

[A1h]

	Byte	MSB = ,1"	LOW HIGH		LOW	HIGH		LOW	HIGH
Request	ID.No.	FUNC.		lress & S & Delay	Numb. of Bytes		n – Bytes	CRO	C 16
									_
	Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Replay	ID.No.	FUNC.	Add	ress	Numb. of Bytes		CRC 16		

Send RS232 sendet die *n*-Bytes direkt an den RS232-Ausgang (**CL-PORT**) des Packs. Das Startbit wird HIGH (5V) ausgegeben.

Über "Address" wird der **UART-Mode** bestimmt. Dabei kann die Baudrate, Parität, Stopbit und der Interframe-Space bestimmt werden.

Interframe Space definiert die Pause (in **0.1ms**) zwischen den zusendenden Senderahmen (10/11-Bit Paketen).

Direkt nach dem Senden wird der Buffer mit den empfangnen UART-Daten gefüllt. Dabei wartet der Empfangsport (**DA_PORT**) auf ein Startbit. Es wird jeweils 4 Bytelängen jedoch maximal 35.6ms **und** auf eine Aktivität der DIGI-PACK-Schnittstelle gewartet. Diese empfangenen Werte können danach mit dem Befehl *Read SERIAL* aus dem Buffer ausgelesen werden.

Send RS485

[A2h]

		Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request		ID.No.	FUNC.		lress & S & Delay	Numb. of Bytes		n – Bytes	CRO	C 16
	_	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Donlay		ID.No.	FUNC.	Add	Iress	Numb. of Bytes		CRC 16		

Send RS485 sendet die *n*-Bytes direkt an den RS485-Ausgang (**CL-PORT** & **DA-PORT**) des Packs. Das Startbit wird auf CL-Port LOW (0V) und auf DA-PORT HIGH (5V) ausgegeben. Über "Address" wird der **UART-Mode** bestimmt. Dabei kann die Baudrate, Parität, Stopbit und der Interframe-Space bestimmt werden.

Interframe Space definiert die Pause (in **0.1ms**) zwischen den zusendenden Senderahmen (10/11-Bit Paketen).

Direkt nach dem Senden wird der Buffer mit den empfangnen UART-Daten gefüllt. Dabei wartet der Empfangsport (**CL-PORT** & **DA-PORT**) auf ein Startbit. Ein Startbit wird erkannt, wenn entweder CL-PORT=LOW oder DA-PORT=HIGH wird. Es wird jeweils 4 Bytelängen jedoch maximal 35.6ms **und** auf eine Aktivität der DIGI-PACK-Schnittstelle gewartet.

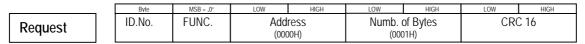
Diese empfangenen Werte können danach mit dem Befehl *Read SERIAL* aus dem Buffer ausgelesen werden.

Send UART with PULL-HIGH at HALFDUPLEX [A4h]

	_	Byte	MSB = ,1"	LOW HIGH		LOW	HIGH		LOW	HIGH
Request		ID.No.	FUNC.	Address BAUD & P & S & Delay		Numb. of Bytes		n – Bytes	CR	C 16
	_							,		
		Byte	MSB = "1"	LOW HIGH		LOW HIGH		LOW	HIGH	1
Replay		ID.No.	FUNC.	Address		Numb. of Bytes		CRC 16		

Send UART_PH sendet die *n*-Bytes direkt an den Seriellen-Ausgang (**DA-PORT**) des Packs. Das Startbit wird LOW (0V) ausgegeben.

Über "Address" wird der **UART-Mode** bestimmt. Dabei kann die Baudrate, Parität, Stopbit und der Interframe-Space bestimmt werden.


Interframe Space definiert die Pause (in **0.1ms**) zwischen den zusendenden Senderahmen (10/11-Bit Paketen).

Direkt nach dem Senden wird der Buffer mit den empfangnen UART-Daten gefüllt. Dabei wartet der Empfangsport (**DA_PORT**) auf ein Startbit. Es wird jeweils 4 Bytelängen jedoch maximal 35.6ms **und** auf eine Aktivität der DIGI-PACK-Schnittstelle gewartet. Diese empfangenen Werte können danach mit dem Befehl Read SERIAL aus dem Buffer ausgelesen werden.

Ein weiterer Ausgang (**CL_PORT**) wird während der Empfangssequenz auf High geschalten und kann somit als Pull-High verwendet werden.

SPI Read Status

[28h]

	_	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay		ID.No.	FUNC.	Add (000		Numb. (Status	CRO	C 16

SPI Read Status liest das Status-Byte eines SPI-kompatiblen Bausteins, wie z.B. ein SPI- EEProm .

Numb. of Bytes muss 0001 sein, sonst wird ein Applikationserror zurückgegeben.

Der Clock-Ausgang ist CL-PORT

Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden)

Der Chip-Enable-Ausgang ist CS-PORT

SPI Write Status

[A8h]

_		Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
	Request	ID.No.	FUNC.	Add (000	ress 10H)	Numb. (of Bytes 11H)	Status	CRO	C 16

	_	Bvte	MSB = .1"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Replay		ID.No.	FUNC.		ress 10H)		of Bytes 01h)	CRO	C 16

SPI Write Status schreibt das Status-Byte eines SPI-kompatiblen Bausteins, wie z.B. ein SPI-EEProm.

Numb. of Bytes muss 0001 sein, sonst wird ein Applikationserror zurückgegeben.

Der Clock-Ausgang ist CL-PORT

Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden)

Der Chip-Enable-Ausgang ist CS-PORT

Read large SPI

[2Ah]

Request		ID.No.	MSB = ,0° FUNC.	Add	Address		Numb. of Bytes		CRC 16	
	_									
		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay		ID.No.	FUNC.	Add	ress	Numb. of Bytes		n – Bytes	n – Bytes CRC	

Read large SPI liest den Inhalt eines SPI-kompatiblen Bausteins, wie z.B. ein SPI- EEProm. Die Adresse des EEProms muss als 16Bit (2Byte) – Adressformat definiert sein. Die Startadresse wird durch [Address], die Anzahl der ab Startadresse zu lesenden Bytes wird durch [Numb. of Bytes] bestimmt.

Der Clock-Ausgang ist CL-PORT Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden) Der Chip-Enable-Ausgang ist CS-PORT

Write large SPI

[AAh]

		Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CR	C 16
	_	Byte	MSB = "1"	LOW HIGH		LOW HIGH		LOW	HIGH]
Donlay	1	ID.No.	FUNC.	Address		Numb. of Bytes		CRC 16		

Write large SPI schreibt einen SPI-kompatiblen Bausteins, wie z.B. ein SPI- EEProm.

Die Adresse des EEProms muss als 16Bit (2Byte) – Adressformat definiert sein.

Die Startadresse wird durch [Address], die Anzahl der ab Startadresse zu lesenden Bytes wird durch [Numb. of Bytes] bestimmt.

Ein Write-Enable wird automatisch gesendet.

Das Page-Ende ist auf 16 Byte definiert und wird automatisch erkannt. Nach jeder Page wird eine Internal-Write-Cycle-Pause von 5ms abgewartet.

Der Clock-Ausgang ist CL-PORT

Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden)

Der Chip-Enable-Ausgang ist CS-PORT

Read smal I2C

[2Ch]

Request		ID.No.	FUNC.	Address		Numb. of Bytes		CRC 16		
	_									
		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay		ID.No.	FUNC.	LOW HIGH Address		Numb. of Bytes		n – Bytes	CRO	C 16

Read smal I2C liest den Inhalt eines I²C-kompatiblen Bausteins, wie z.B. ein I²C- EEProm. Die Darstellung der EEProm-Adresse muss im Format: [Controll-Byte + Adress-Byte] (2Byte) vorliegen.

Das Control-Byte wird durch [Address-High], die Startadresse durch [Address-Low], und die Anzahl der ab Startadresse zu lesenden Bytes durch [Numb. of Bytes] bestimmt. Der Device-Typ "E²Potentiometer (5xh)" wird erkannt.

Als Folge wird ein verkürztes l²C-Protokoll ohne zweitmaliges Senden des Control-Bytes gesendet.

Der Clock-Ausgang ist CL-PORT

Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden)

Der Ausgang CS_PORT ist während der Aktivität High und kann somit für Pull-High der Datenleitung benutzt werden.

Write smal I2C

[ACh]

Request	Byte ID.No.	MSB = ,1° FUNC.	Low	ress	Numb.	of Bytes	n – Bytes	CRO	нідн С 16
	Byte	MSB = ,1"	Low	HIGH	Low	HIGH	LOW	HIGH	1
Replay	ID.No.	FUNC.	 	ress		of Bytes		C 16	•

Write smal I2C schreibt einen I²C -kompatiblen Bausteins, wie z.B. ein I²C - EEProm. Die Darstellung der EEProm-Adresse muss im Format: [Controll-Byte + Adress-Byte] (2Byte) vorliegen.

Das Control-Byte wird durch [Address-High], die Startadresse durch [Address-Low], und die Anzahl der ab Startadresse zu lesenden Bytes durch [Numb. of Bytes] bestimmt. Das Page-Ende ist auf 16 Byte definiert und wird automatisch erkannt. Nach jeder Page wird eine Internal-Write-Cycle-Pause von 10ms abgewartet.

Der Clock-Ausgang ist CL-PORT

Der Daten-Ein/Ausgang ist DA-PORT (SDI und SDO sind verbunden)

Der Ausgang CS_PORT ist während der Aktivität High und kann somit für Pull-High der Datenleitung benutzt werden.

HARDWARE-Protokoll

Read Hardware

70h]

	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Request	ID.No.	FUNC.	Add (000	ress IOH)	Numb. (000	of Bytes 01H)	CRO	C 16

	Bvte	MSB = .0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay	ID.No.	FUNC.	Addı (000			of Bytes 11H)	Port	CRO	C 16

Read Hardware liest den durch [ID.No.] angewählten Port aus.

[Address] muss 0000, [Numb. of Bytes] muss 0001 sein, sonst wird ein Applikationserror zurückgegeben.

Das ausgelesene Byte hat folgende Darstellung:

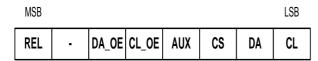
Byte Adr. 0:

MSB							LSB
REL	•	DA_OE	CL_OE	AUX	CS	DA	CL

Write Hardware

[F0h]

	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.No	. FUNC.		ress OOH)		of Bytes 01H)	Port	CR	C 16


	_	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH	LOW	HIGH
Replay		ID.No.	FUNC.		ress OOH)		of Bytes 11H)	CRO	C 16

Write Hardware beschreibt den durch [ID.No.] angewählten Port aus.

[Address] muss 0000, [Numb. of Bytes] muss 0001 sein, sonst wird ein Applikationserror zurückgegeben.

Das Port-Zustands-Byte hat folgende Darstellung:

Byte Adr. 0:

Read Hardware "Read-Modify-Write"

71h]

		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Request		ID.No.	FUNC.		ress OOH)		of Bytes 02H)	CRO	C 16	
	_									
		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Ponlay		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	Port&Rel.	CRO	C 16

Read Hardware RMW liest den durch [ID.No.] angewählten Port in der RMW-Darstellung

(0000H)

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die ausgelesenen Bytes haben folgende Darstellung:

Byte Adr. 0:

Replay

Byte Adr. 1:

(0002H)

(0002H)

MSB							LSB	MSB							LSB
0	0	0	0	AUX	CS	DA	CL	0	0	0	0	REL	0	DA_OE	CL_OE

Write Hardware "Read-Modify-Write"

F1h]

	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.No.	FUNC.		lress ^{00H)}		of Bytes D2H)	Port&Rel.	CR	C 16
	Byte	MSB = ,1"	LOW	HIGH	LOW	HIGH	LOW	HIGH]
Replay	ID.No.	FUNC.		lress		of Bytes	CRO	C 16	

Write Hardware RMW beschreibt den durch [ID.No.] angewählten Port.

Dabei kann mit dem Setzen der Enable-Bits durch eine "1" gewählt werden, welches Bits geändert werden oder durch Setzen einer "0" welche Bits im alten Zustand belassen werden

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die ausgelesenen Bytes haben folgende Darstellung:

Byte Adr. 0:

Byte Adr. 1:

MSB							LSB	MSB					LSB
AUX En	CS En	DA En	CL En	AUX	CS	DA	CL	REL En	DA_OE En	CL_OE En	REL	0	DA_OE CL_OE

Beispiel:

Ein/Ausschalten des angewählten Relais

FUNC. = F1h Address = 0000h Numb. of Bytes = 0001h

Data = 88h = Relais einschalten / 80h = Relais ausschalten

Read entire Hardware

74h]

	!	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Request		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	CRO	C 16	
						-		•		1
	[Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH

Read entire Hardware liest alle Zustände der durch [Address] und [Numb. of Bytes] angewählten Ports. Dabei ist dem 1.Port die Adresse 0000, dem 2. Port die Adresse 0001 etc. zugeordnet.

Der Wert der [ID.No.] ist unbedeutend.

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die ausgelesenen Bytes haben folgende Darstellung:

Byte Adr. 0...5:

| MSB | LSB | | REL | - | DA_OE | CL_OE | AUX | CS | DA | CL |

Write entire Hardware

F4h]

	Byte	MSB = ,1*	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CR	C 16
	Byte	MSB = ,1*	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Replay	ID.No.	FUNC.	Add	lress	Numb.	of Bytes	CRO	C 16	

Write entiere Hardware beschreibt alle Zustände der durch [Address] und [Numb. of Bytes] angewählten Ports. Dabei ist dem 1.Port die Adresse 0000, dem 2. Port die Adresse 0001 etc. zugeordnet.

Der Wert der [ID.No.] ist unbedeutend.

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die gesendeten Bytes haben folgende Darstellung:

Byte Adr. 0...5:

MSB							LSB
REL	-	DA_OE	CL_OE	AUX	CS	DA	CL

Read Cross Hardware

76h]

Request	ID.No.	MSB = ,0" FUNC.	Add	ress	Numb.	of Bytes	CRO	нібн С 16	
	Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay	ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CRO	C 16

Read Cross Hardware liest den Zustand der Karte geordnet nach Typ (CL, DA, CS...), adressiert durch [Address] und [Numb. of Bytes]. Dabei sind die CL-Ports1...6 der Adresse 0000, die DA-Ports1...6 der Adresse 0001 etc. zugeordnet.

Der Wert der [ID.No.] ist unbedeutend.

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die Daten-Bytes haben folgende Darstellung:

Address:	MSB							LSB
0000Н	-	ı	CL6	CL5	CL4	CL3	CL2	CL1
0001H	-	-	DA6	DA5	DA4	DA3	DA2	DA1
0002H	-	-	CS6	CS5	CS4	CS3	CS2	CS1
0003H	-	-	AUX6	AUX5	AUX4	AUX3	AUX2	AUX1
0004H	-	-	CL_OE6	CL_OE5	CL_OE4	CL_OE3	CL_OE2	CL_OE1
0005H	-	-	DA_OE6	DA_OE5	DA_OE4	DA_OE3	DA_OE2	DA_OE1
0006H	-	-	REL6	REL5	REL4	REL3	REL2	REL1

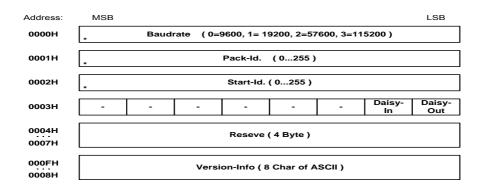
Write Cross Hardware

F6h]

Request	Byte ID.No.	MSB = ,1* FUNC.	Low	ress	Numb.	of Bytes	n – Bytes	CRO	CRC 16	
	Byte	MSB = ,1*	LOW	HIGH	LOW	HIGH	LOW	HIGH	ļ	
Renlay	ID.No.	FUNC.	Add	ress	Numb.	of Bytes	CRO	C 16		

Write Cross Hardware beschreibt den Zustand der Karte geordnet nach Typ (CL, DA, CS...), adressiert durch [Address] und [Numb. of Bytes]. Dabei sind die CL-Ports1...6 der Adresse 0000, die DA-Ports1...6 der Adresse 0001 etc. zugeordnet. Der Wert der [ID.No.] ist unbedeutend.

[Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.


Read Hardware Configuration

78h]

Request	7	ID.No.	MSB = ,0" FUNC.	Low	ress	Numb.	of Bytes	CRO	ні <u>д</u> н	
	_									
		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CRO	C 16

Read Hardware Configuration liest die aktuellen Einstellungen der Karte aus. Die Parameter sind adressiert durch [Address] und [Numb. of Bytes]. [Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Die Parameter sind wie folgt den Adressen zugeordnet:

^{*} Diese Werte werden ins EEProm gespeichert (Addresse 3F0H ... 3FFH)

Write Hardware Configuration

F8h]

	 Bvte	MSB = .1*	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request	ID.No.	FUNC.	Add	ress	Numb. of Bytes		n – Bytes	CRC 16	
	Byte	MSB = ,1*	LOW	HIGH	LOW	HIGH	LOW	HIGH	
Replay	ID.No.	FUNC.	Add	ress	Numb.	of Bytes	CRO	C 16	

Write Hardware Configuration überschreibt die aktuellen Einstellungen der Karte. Die neue Konfiguration ist unmittelbar nach der Ausführung des Befehles gültig. Die Parameter sind adressiert durch [Address] und [Numb. of Bytes]. [Address] und [Numb. of Bytes] müssen gültig sein, sonst wird ein Applikationserror zurückgegeben.

Hardware EEProm Read

[7Ah]

Request		ID.No.	MSB = ,0" FUNC.	Add	ress	Numb.	of Bytes	CRO	<u>нібн</u> С 16	
	_									
		Byte	MSB = "0"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Replay		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CRO	C 16

Hardware EEProm Read liest den Inhalt des auf der Karte befindenden EEProm. Die Adresse des EEProms muss als 16Bit (2Byte) – Adressformat definiert sein. Die Startadresse wird durch [Address], die Anzahl der ab Startadresse zu lesenden Bytes wird durch [Numb. of Bytes] bestimmt.

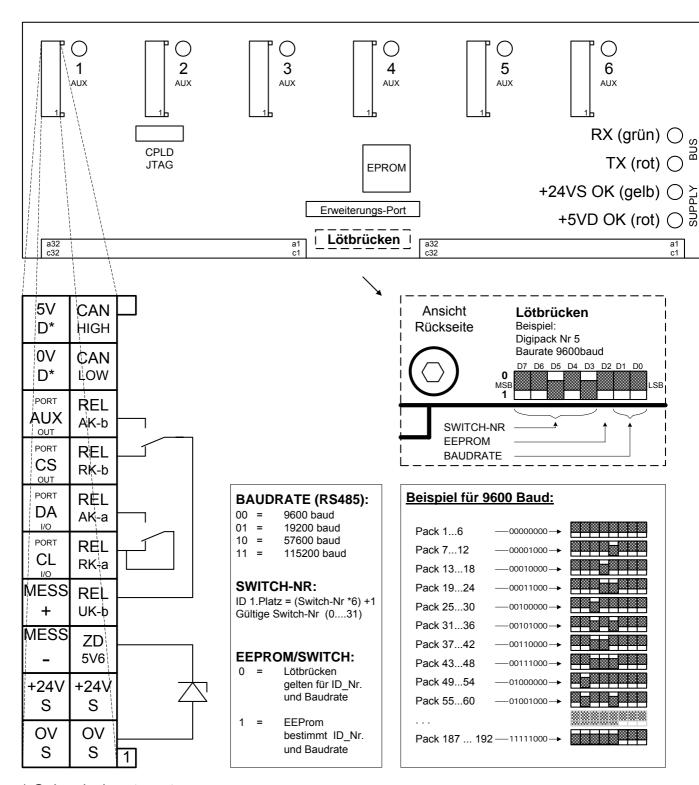
Hardware EEProm Write

[FAh]

		Byte	MSB = "1"	LOW	HIGH	LOW	HIGH		LOW	HIGH
Request		ID.No.	FUNC.	Add	ress	Numb.	of Bytes	n – Bytes	CRO	C 16
										_
	_	Byte	MSB = "1"	LOW	HIGH	LOW	HIGH	LOW	HIGH	1

Hardware EEProm Read beschreibt den Inhalt des auf der Karte befindenden EEProm. Die Adresse des EEProms muss als 16Bit (2Byte) – Adressformat definiert sein. Die Startadresse wird durch [Address], die Anzahl der ab Startadresse zu schreibenden Bytes wird durch [Numb. of Bytes] bestimmt.

Die Grösse des Speichers ist abhängig vom eingesetzten EEProm:


25LC80 = 1024 Byte 25LC320 = 4096 Byte 25LC640 = 8192 Byte

- - -

Die Adressen 3F0H ... 3FFH sind für die Digi-Pack-Parameter Baudrate, Pack-Id etc. vergeben und sollten vom Anwender <u>nicht</u> überschrieben werden!

10.03.2004/ChS Seite 36/39 Digi-Pack.doc

Anschlussbelegung Stecker DIGI-PACK

^{*} Galvanisch getrennt